مروری بر تحقیقات استهلاک ومیرایی امواج دریا از طریق پوشش گیاهی ساحلی

نویسندگان

1 دکتری سازه های آبی، دانشگاه شهید چمران اهواز

2 عضو هیئت علمی سازه های آبی، دانشگاه شهید چمران اهواز

چکیده

اقلیم موج در ترکیب با جریانات، جزر و مدها و امواج طوفانی دلیل عمده مسائل فرسایش سواحل هستند. کاهش اثر امواج بر روی مناطق ساحلی از جمله موضوعات مهم در مهندسی سواحل به شمار می‌رود. از این رو ابزار و روش‌های مختلف حفاظت، شامل موج شکن‌ها، آبشکن‌ها و صخره‌های مصنوعی، مورد مطالعه قرار گرفته و توسعه یافته‌اند. همچنین در دهه‌ی اخیر تمایل زیادی در خصوص مطالعه بررسی اثر پوشش‌های گیاهی بر جریان دریاها، رودخانه‌ها، مصب‌ها و خلیج‌ها بوجود آمده است. این طیف از علاقمندی رویکردی نوین به مفهومی دارد که بر مبنای برقراری تعادل اکولوژیکی منطقه ساحلی، در صدد حل مسائل هیدرولیک و مهندسی سواحل برمی‌آید. نتایج تحقیقات به عمل آمده در این زمینه، مبین این مطلب است که بطور کلی پوشش گیاهی، مقاومت در مقابل جریان را افزایش داده، جریان را کنترل می‌کند و میزان فرسایش و رسوبگذاری را تحت تأثیر قرار می‌دهد.این بررسی پیشینه مطالعاتی بر روی تعدیل توسعه و پیشروی امواج توسط پوشش درختی متمرکز شده است، اما در مورد میرایی امواج ناشی از طوفان و امواج بلند نیز به طور خلاصه بحث شده است. اگر چه امواج ممکن است در محیط های آب شیرین نیز ایجاد شوند (ناشی از حرکت کشتی و قایق، ناحیه بادگیر بر روی دریاچه‌ها، امواج سیل و غیره)، اما این بررسی بر روی پوشش درختی ساحلی و عوارض حاصل در اثر سیل و کاهش خسارات ناشی از طوفان تمرکز دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Review of Research at Depreciation andAttenuationofWavesthrougha in CoastalVegetation

نویسندگان [English]

  • E. Ghanbari 1
  • M. Fathi Moghadam 2
چکیده [English]

Flooding resulting from hurricanes and other extreme storm events is aprominent risk along the coasts. These coastal areas are typically of low elevation and relief, making land and infrastructure highly susceptible to inundation by storm surge and waves. Theseverity of this threat is exacerbated by sea level rise and a possible increase in storm frequencyand strength due to climate change. Although hard protection structures such as levees and floodwalls reduce flood risk, these structures may fail when storm conditions exceed the designthreshold. There is a general consensus that wetlands, which often serve as transition zonesbetween open water and dry land, could act as buffers and reduce storm surge and propagatingwaves substantially before they encounter coastal development. Unfortunately, the capability of wetlands to serve as protection during extreme storms is not understood fully or welldocumented; furthermore, water level and wave height reductions by vegetation are studied onlyin low-energy environments. Nonetheless, these studies present methods to quantify vegetation-induced wave attenuation for both modeling and design. This technical note focuses on thedamping of propagating water waves by vegetation, but also discusses surge reduction briefly. Although waves may be encountered in freshwater environments (e.g., boat wakes, lake fetch, flood waves, etc.), this review focuses on coastal vegetation and resultant effects on flood and storm damage reduction.

کلیدواژه‌ها [English]

  • Sea
  • shore
  • vegetation
  • wave attenuation

منابع

[1]               Arcement, G.  J. and V.  R. Schneider. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and floodplains. USGS-WSP-2339. Denver, CO: United States Geological Survey.

[2]               Asano, T., S. Tsutsui, and T. Sakai. 1988. Wave damping characteristics due to seaweed.  Proceedings of the 35th Coastal Engineering Conference in Japan. JSCE. 138-142 (in Japanese).

[3]               Asano, T., H. Deguchi, and N. Kobayashi. 1992. Interactions between water waves and vegetation. Proceedings of the 23rd International Conference on Coastal Engineering. ASCE. 2710-2723.

[4]               Augustin, L.N., J.L. Irish, and P. Lynett. 2009. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coastal Engineering. 56(3): 332-340.

[5]               Barnes, H.H. 1967. Roughness characteristics of natural channels.  USGS WSP-1849. Washington, DC: United States Geological Survey.

[6]               Bradley, K., and C. Houser. 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. Journal of Geophysical Research. 114: F01004.

[7]               Camfield, F.E. 1977.  A method for estimating wind-wave growth and decay in shallow water with high values of bottom friction. CETA 77-6. Fort Belvoir, VA: Coastal Engineering Research Center.

[8]               Cavallaro L., C.L. Re, G. Paratore, A. Viviano, and E. Foti. 2010. Response of Posidonia oceanic to wave motion in shallow-waters: Preliminary experimental results. Proceedings of the 32nd

[9]               International Conference on Coastal Engineering. Coastal Engineering Research Council. 1-10.

[10]           Cooper, N.J. 2005. Wave dissipation across intertidal surfaces in the Wash Tidal inlet, Eastern England. Journal of Coastal Research. 21(1): 28-40.

[11]           Dalrymple, R.A., J.T. Kirby, and P.A. Hwang. 1984. Wave diffraction due to areas of energy dissipation. Journal of Waterway, Port, Coastal, and Ocean Engineering. 110(1): 67-79.

[12]           Dean, R.G. 1979. Effects of vegetation on shoreline erosional processes. Wetland Function and Values: The State of Our Understanding. 1: 415-426.

[13]           Dean, R.G., and R.A. Dalrymple. 1991.  Water Wave Mechanics for Engineers and Scientist.  World Scientific Publishing. Singapore.

[14]           Dean, R.G., and C.J. Bender. 2006. Static wave setup with emphasis on damping effects by vegetation and bottom friction. Coastal Engineering. 53: 149-156.

[15]           Denny, M. and B. Gaylord. 2002. The mechanics of wave-swept algae. The Journal of Experimental Biology. 205: 1355-1362.

[16]           Dubi, A. 1995. Damping of water waves by submerged vegetation: A case study on Laminaria hyperborea. PhD thesis. University of Trondheim, the Norwegian Institute of Technology, Trondheim, Norway.

[17]           Dubi, A., and A. Tørum. 1996. Wave energy dissipation in kelp vegetation. Proceedings of the 25th International Conference on Coastal Engineering. ASCE. 2626-2639.

[18]           Fischenich, C. 2000. Resistance due to vegetation. ERDC TN-EMRRP-SR-07. Vicksburg, MS: Waterways Experiment Station.

[19]           Fischenich, C. and S. Dudley. 2000. Determining drag coefficients and area for vegetation. ERDC TN-EMRRP-SR-08. Vicksburg, MS: Waterways Experiment Station. 

[20]           Fonseca, M.S., J.S. Fisher, J.C. Zieman, and G.W. Thayer.  1982.  Influence of seagrass, Zostera marina L., on current flow. Estuarine, Coastal, and Shelf Science. 15: 351-364.

[21]           Fonseca, M.S., and J.A. Cahalan. 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal, and Shelf Science. 35(6): 565-576.

[22]           Fonseca, M.S., M.A.R. Koehl, and B.S. Kopp. 2007. Biomechanical factors contributing to self-organization in seagrass landscapes. Journal of Experimental Marine Biology and Ecology. 340: 227-246.

[23]           Freeman, G.E., W.J. Rahmeyer, and R.R. Copeland.  2000. Determination of resistance due to shrubs and woody vegetation. ERDC/CHL TR-00-25. Vicksburg, MS: Engineer Research and Development Center.

[24]           Gaylord, B. and M.W. Denny. 1997. Flow and flexibility: I. Effects of size, shape and stiffness in determining wave forces on the stipitate kelps Eisenia arborea and Pterygophora californica.  The Journal of Experimental Biology. 200: 3141–3164.

[25]           Ghisalberti, M. and H.M. Nepf. 2002. Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research. 107 (C2), doi: 10.1029/2001JC000871.

[26]           Irish, J.L. L.N. Augustin, G.E. Balsmeier, and J.M. Kaihatu. 2008. Wave dynamics in coastal wetlands: A state-of- knowledge review with emphasis on wetland functionality for storm damage reduction. Shore and Beach. 76(3): 52-56.

[27]           Jarvela, J.  2002.  Flow resistance of flexible and stiff vegetation: A flume study with natural plants.  Journal of Hydrology. 269: 44-54. 

[28]           Kees, C.E., M.W. Farthing, S.A. Mattis, and C.N. Dawson.  2010. Homogenization and upscaling of flow through vegetation. XVIII International Conference on Water Resources CMWR 2010, Barcelona.

[29]           Knutson, P.L., R.A. Brochu, W.N. Seelig, and M. Inskeep. 1982. Wave damping in Spartina alterniflora marshes. Wetlands. 2(1): 87-104.

[30]           Kobayashi, N., A.W. Raichle, and T. Asano. 1993. Wave attenuation by vegetation.  Journal of Waterway, Port, Coastal, and Ocean Engineering. 119(1): 30-48.

[31]           Koch, E.W., L.P. Sanford, S.N. Chen, D.J. Shafer, and J.M. Smith. 2006.  Waves in seagrass systems: Review and technical recommendations. ERDC TR-06-15. Vicksburg, MS: Engineering Research and Development Center.

[32]           Krauss, K.W., T.W. Doyle, T.J. Doyle, C.M. Swarzenski, A.S. From, R.H. Day, and W.H. Conner. 2009. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands. 29(1): 142-249. 

[33]           Leonard, L.A. and M.E. Luther. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography. 40 (8): 1474-1484.

[34]           Lima, S.F., C.F. Neves, and N.M.L. Rosauro. 2006. Damping of gravity waves by fields of flexible vegetation. Proceedings of the 30th International Conference on Coastal Engineering. World Scientific. 491-503.

[35]           Loder, N.M., J.L. Irish, M.A. Cialone, and T.V. Wamsley. 2009. Sensitivity of hurricane surge to morphological parameters of coastal wetlands. Estuarine, Coastal, and Shelf Science. 84: 625-636.

[36]           Løvås, S.M. 2000. Hydro-physical conditions in kelp forests and the effect on wave damping and dune erosion: A case study on Laminaria hyperborea. PhD thesis. University of Trondheim, the Norwegian Institute of Technology, Trondheim, Norway.

[37]           Løvås, S.M., and A. Tørum. 2000. Effect of submerged vegetation upon wave damping and run-up on beaches: A case study of Laminaria hyperborea. Proceedings of the 27th International Conference on Coastal Engineering. ASCE. 851-864.

[38]           Lövstedt, C.B., and M. Larson. 2010. Wave damping in reed: Field measurements and mathematical modeling. Journal of Hydraulic Engineering. 136(4): 222-233.

[39]           Lowe, R.J., J.L. Falter, J.R. Koseff, S.G. Monismith, and M.J. Atkinson. 2007. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation.  Journal of Geophysical Research. 112: C05018.

[40]           Massel, S.R., K. Furukawa, and R.M. Brinkman. 1999. Surface wave propagation in mangrove forests. Fluid Dynamics Research. 24(4): 219-249.

[41]           Mazda, Y., M. Magi, M. Kogo, and P.N. Hong. 1997. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt Marshes. 1(2): 127-135.

[42]           Mazda, Y., M. Magi, Y. Ikeda, T. Kurokawa, and T. Asano. 2006. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetlands Ecology and Management. 14(4): 365-378.

[43]           McKay, S.K. and J.C. Fischenich.  2011.  Robust prediction of hydraulic roughness.  ERDC/CHL CHETN-VII-11. Vicksburg, MS: Engineer Research and Development Center.

[44]           Méndez, F.J., I.J. Losada, and M.A. Losada.  1999. Hydrodynamics induced by wind waves in a vegetation field.

[45]           Journal of Geophysical Research. 104(C8): 18383-18396.

[46]           Méndez, F.J. and I.J. Losada. 2004. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering. 51(2): 103-118.

[47]           Mokhtari,M,and Hajizadeh Zaker,N,2005 ,Makran (Sea of Oman) a Tsunami Prone Area for Iranian Coasts,6 th A/O Regional Meeting of IAPH,1-4 Feb,Tehran,Iran.

[48]           Möller, I., T. Spencer, J.R. French, D.J. Leggett, and M. Dixon. 1999. Wave transformation over salt marshes: A field and numerical modelling study from North Norfolk, England.  Estuarine, Coastal, and Shelf Science. 49(3): 411-426.

[49]           Möller, I., and T. Spencer. 2002. Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change. Journal of Coastal Research. S136: 506-521.

[50]           Möller, I. 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK east coast saltmarsh. Estuarine, Coastal, and Shelf Science. 69: 337-351.

[51]           Morison, J.R., M.P. O’Brien, J.W. Johnson, and S. Schaaf. 1950. The force exerted by surface waves on piles. Petroleum Transactions. 189: 149-154.

[52]           Mullarney, J.C., and S.M. Henderson. 2010. Wave-forced motion of submerged single-stem vegetation. Journal of Geophysical Research. 115: C12061.

[53]           Myrhaug, D., L.E. Holmedal, and M.C. Ong. 2009. Nonlinear random wave-induced drag force on a vegetation field. Coastal Engineering. 56(3): 371-376.

[54]           Nepf, H.M. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research. 35(2): 479-489.

[55]           Peltola, H.M.  2006.  Mechanical stability of trees under static loads.  American Journal of Botany.  93(10): 1501-1511.

[56]           Quartel, S., A. Kroon, P.G.E.F. Augustinus, P. Van Santen, and N.H. Tri. 2007. Wave attenuation in coastal mangroves in the Red River Delta, Vietnam. Journal of Asian Earth Sciences. 29(4): 576-584.

[57]           Sorensen, R.M. 2006. Basic Coastal Engineering. Springer Science. New York.

[58]           Tanino, Y. and H.M. Nepf.  2008. Laboratory investigation of mean drag in a random array or rigid, emergent cylinders. Journal of Hydraulic Engineering. 134 (1): 34-41.

[59]           Tschirky, P., K. Hall, and D. Turcke. 2000. Wave attenuation by emergent wetland vegetation. Proceedings of the 27th International Conference on Coastal Engineering. ASCE. 865-877.

[60]           Vo-Luong, P., and S.R. Massel. 2008. Energy dissipation in non-uniform mangrove forests of arbitrary depth. Journal of Marine Systems. 74: 603-622.

[61]           Wamsley, T.V., M.C. Cialone, J.M. Smith, J.H. Atkinson, and J.D. Rosati. 2009. The potential of wetlands in reducing storm surge. Ocean Engineering. 37: 59-68.

[62]           Wayne, C.J. 1976. The effects of sea and marsh grass on wave energy. Coastal Research Notes. 4(7): 6-8.

[63]           Wolanski, E. 1992. Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia. 247: 141-161.