[1] Khanjani, M., Sharifinia, M., 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture.
https://doi.org/10.1111/raq.12412.
[2] Sharifinia, M., Afshari Bahmanbeigloo, Z., Smith Jr, W.O., Yap, C.K., Keshavarzifard, M., 2019a. Prevention is better than cure: Persian Gulf biodiversity vulnerability to the impacts of desalination plants. Global Change Biology. 10.1111/gcb.14808(ja).
[3] Sharifinia, M., Daliri, M., Kamrani, E., 2019b. Estuaries and Coastal Zones in the Northern Persian Gulf (Iran), Coasts and Estuaries. Elsevier, pp. 57-68.
[4] Lekang, O.-I., 2013. Aquaculture engineering. John Wiley & Sons.
[5] Kungvankij, P., Chua, T.-E., Pudadera Jr, B., Corre, K., Borlongan, E., Tiro Jr, L., Potestas, I., Talean, G., 1986. Shrimp culture: pond design, operation and management.
[6] Treece, G.D., Fox, J.M., 1999. Design, operation and training manual for an intensive culture shrimp hatchery. DIANE Publishing.
[7] Taw, N., 2017. A look at various intensive shrimp farming systems in Asia. Global Aquaculture Advocate Magazine.
[8] Taw, N., Fuat, J., Tarigan, N., Sidabutar, K., 2008. Partial harvest/biofloc sistem promising for Pacific white shrimp. Global Aquaculture Advocate Magazine, 84-86.
[9] Taw, N., 2005. Shrimp farming in Indonesia evolving industry responds to varied issues. Global Aquaculture Advocate Magazine, 65-67.
[10] Khanjani, M., Alizadeh, M., Sharifinia, M., 2020. Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquaculture Nutrition
https://doi.org/10.1111/anu.12994.
[11] Ahmad, I., Babitha Rani, A.M., Verma, A.K., Maqsood, M., 2017. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International 25(3), 1215-1226.
[12] Avnimelech, Y., 2009. Biofloc technology: a practical guide book. World Aquaculture Society.
[13] Emerenciano, M., Gaxiola, G., Cuzon, G., 2013. Biofloc technology (BFT): a review for aquaculture application and animal food industry. Biomass now-cultivation and utilization, 301-328.
[14] خانجانی، م.ح. 1398. تأثیر سطوح مختلف شوری و منابع کربن در سیستم تولید توده زیستی (Biofloc). مجله علمی شیلات ایران: دوره ۲۸، شماره ۴; ۶۹-۷۹.
[15] خانجانی، م.ح.، سجادی، م.م.، علیزاده، م.، سوری نژاد، ا. 1394. تاثیر نسبتهای مختلف غذادهی بر کیفیت آب، عملکرد رشد و بقاء پست لاروهای میگوی سفید غربی (Litopenaeus vannamei Boone, 1931) با استفاده از تکنولوژی بیوفلوک. مجله علمی شیلات ایران، 24: 28 – 13.
[16] خانجانی، م.ح.، سجادی، م.م.، علیزاده، م.، سوری نژاد، ا. 1395. تولید و ارزیابی بیوفلوک به منظور به کارگیری در سیستم پرورشی بدون تعویض آب. نشریه توسعه آبزی پروری، 10: 41 – 33.
[17] خانجانی، م.ح.، علیزاده، م.، رفیعی پور، ا. 1395. توسعه آبزی پروری پایدار با استفاده از فنآوری توده سازی زیستی. بهره برداری و پرورش آبزیان، 5: 72 – 45.
[18] Taw, N., Poh, Y., Ling, T., Thanabatr, C., Salleh, K., 2011. Malaysian shrimp farm redesign successfully combines biosecurity, biofloc technology. Global Aquaculture Advocate, 74-75.
[19] Menasveta, P., 2002. Improved shrimp growout systems for disease prevention and environmental sustainability in Asia. Reviews in Fisheries Science 10(3-4), 391-402.
[20] Lightner, D.V., 2005. Biosecurity in shrimp farming: pathogen exclusion through use of SPF stock and routine surveillance. Journal of the World Aquaculture Society 36(3), 229-248.
[21] Itano, T., Inagaki, T., Nakamura, C., Hashimoto, R., Negoro, N., Hyodo, J., Honda, S., 2019. Water circulation induced by mechanical aerators in a rectangular vessel for shrimp aquaculture. Aquacultural Engineering 85, 106-113.
[22] Effendy, I., Al Deen, S., Chithambaran, S., 2016. Semi Intensive and Semi Biofloc Methods for the Culture of Indian White Prawn, Fenneropenaeus indicus in High-density Polyethylene Liner Ponds. HAYATI Journal of Biosciences 23(3), 106-110.
[23] Latt, U.W., 2002. Shrimp pond waste management. Aquaculture Asia 7(3), 11-48.