طراحی یک سیستم تولید همزمان سرمایش، گرمایش و قدرت برای استفاده در کشتی

نوع مقاله: مطالعه موردی

نویسندگان

1 دانشجوی کارشناسی ارشد، گرایش معماری کشتی

2 استاد دانشکده کشتی سازی دانشگاه صنعتی شریف

چکیده

این پژوهش با استفاده از انرژی اتلافی موتور دیزل، به تولید قدرت، سرمایش و گرمایش می پردازد. مدار رانکین برای بازیابی انرژی اتلافی برای تولید الکتریسیته و انرژی اتلافی کندانسور، در راه‌اندازی سیستم تبرید جذبی استفاده شده است. مدار رانکین با استفاده از مخزن گرمایش آب تغذیه باز در طی دو مرحله بهبود یافته است. تاثیر تغییر پارامترهایی همچون دمای اواپراتور، فشار اواپراتور و فشار مخازن گرمایش با هدف افزایش برق تولیدی بررسی شده است. در شرایطی که قدرت موتور 51.480 کیلو‌وات می باشد، حداکثر توان تولیدی از مدار CCHP برابر با 3471 کیلووات و سرمایش تولیدی همزمان برابر با 17601 کیلووات می‌باشد. مقدار افزایش برق تولیدی در مدار اصلاحی اول برابر با 224 کیلوات و در مدار اصلاحی دوم برابر با 202 کیلووات است که در حدود 7 درصد نسبت به مدار اولیه افزایش تولید قدرت داشته ایم.

کلیدواژه‌ها


عنوان مقاله [English]

Design of a combined cooling, heating and power system aboard ships

نویسندگان [English]

  • amir salmani 1
  • M Abbaspor 2
  • M.H Saeidi 2
چکیده [English]

Internal combustion (IC) engines are the major source of motive power in the ships. one of the improvable method is getting waste heat energy of diesel engines and reusing it to produce electricity, cooling and heating. in this study a combined electricity, cooling and heating system based on regenerative Rankine cycle with open feed water heater and absorption refrigeration cycle is offered to recover the waste heat of engine coolant and exhaust gas to generate electricity, cooling and heating. maximum electricity output is 3471 kW and cooling output relevant is 17601 kW. effect of evaporator temperature, condenser temperature, extraction pressure are studied to optimize electricity produced with rankine cycle.

کلیدواژه‌ها [English]

  • Internal combustion (IC) engines
  • combined cooling and heating and power systems (CCHP)
  • Waste heat recovery
  • Rankine cycle (RC)
  • Absorption refrigeration cycle
[1] Capaldo K, Corbett JJ, Kasibhatla P, Fischbeck PS, Pandis SN. . (1999). Effect of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature , 400:743–6.
[2] Tzannatos, E. (2010). Ship emissions and their externalities for the port of Piraeus – Greece. Atmospheric Environment, 44(3), 400–407.
[3] Shu G, Liang Y, Wei H, Tian H, Zhao J, Liu L. (2013). A review of waste heat recovery on two-stroke IC engine aboard ships. Renewable & Sustainable Energy Reviews, 19, 385–401.
[4] Bidini G, Maria F, Generosi M. (2005). Micro-cogeneration system for a small passenger vessel operating in a nature reserve. Applied Thermal Engineering, 25, 851-65.
[5] Tien WK, Yeh RH, Hong JM. (2007). Theoretical analysis of cogeneration system for ships. Energy Conversion and Management, 48, 1965–74.
[6] Rigby GR, Hallegraeff GM, Sutton C. (1999). Novel ballast water heating technique offers cost-effective treatment to reduce the risk of global transport of harmful marine organisms. Mar Ecol Prog Ser, 191, 289–93.
[7] Teng H, Regner G, Cowland C. (2006). Achieving high engine efficiency for heavy-duty diesel engines by waste heat recovery using supercritical organic-fluid Rankine cycle. SAE paper, 2006-01-3522.
[8] Srinivasan KK, Mago PJ, Krishnan SR. (2010). Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle. Energy, 35, 2387–99.
[9] Shu G, Zhao J, Tian H, Liang X, Wei H. (2012). Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic Rankine cycle utilizing R123. Energy, 45, 806–16.
[10] Shu G, Liu L, Tian H, Wei H, Xu X. (2013). Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Convers Manage, 74, 35–43.
[11] Yu G, Shu G, Tian H, Wei H, Liu L. (2013). Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy, 51, 281-90.
[12] Srikhirin P, Aphornratana S, Chungpaibulpatana S. (2001). A review of absorption refrigeration technologies. Renew Sustain Energy Rev, 5, 343–72.
[13] Fernandez-Seara J, Vales A, Vazquez M. (1998). Heat recovery system to power an onboard NH3 –H2O absorption refrigeration plant in trawler chiller fishing vessels. Applied Thermal Engineering, 18, 1189–205.
[14] Manzela AA, Hanriot SM, Cabezas-Gomez L. (2010). Using engine exhaust gas as energy source for an absorption refrigeration system. Applied Energy, 87, 1141–8.
[15] Wu DW, W. R. (2006). Combined cooling, heating and power: a review. Progr Energy Combust Sci ;32(5–6), 459–95.
[16] Youcai Liang, G. S. (2013). Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship. Energy Conversion and Management 76, 1053–1060.