نوع مقاله: مروری

نویسندگان

1 استادیار گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، کرمان، ایران

2 استادیار پژوهشکده میگوی کشور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بوشهر، ایران

چکیده

جلبک‏ها مهمترین تولید‏کنندگان اولیه هستند که بطور کلی به دو زیر گروه میکروجلبک (میکروسکوپیک) و ماکروجلبک (ماکروسکوپیک) تقسیم بندی می‏شوند. جلبک‏های دریایی منابع مهمی از ترکیبات فیتوشیمیایی با خواص آنتی اکسیدانی هستند که در داروسازی، مصارف پزشکی، صنعت تغذیه انسان، دام و آبزیان بصورت مستقیم و غیرمستقیم نقش دارند. میکروجلبک‏ها به عنوان منبع تغذیه‏ای مهم برای مراحل ابتدایی رشد و توسعه لارو آبزیان محسوب می‏شوند. بسیاری از فرآورده‏ها مانند کاروتنوئید، فیکوبیلین، اسیدهای چرب غیراشباع، پلی ساکاریدها، ویتامین‏ها و مولکول‏های فعال بیولوژیکی که برای استفاده در سلامت انسان و آبزیان مهم هستند، در جلبک‏ها شناسایی و جداسازی شده است. اسیدهای چرب غیراشباع بلند زنجیره PUFA (ایکوزاپنتاانوئیک اسید (EPA،3n-20:5) و دیکوزاهگزاانوییک اسید (DHA، یا 3n-22:6) برای متابولیسم بدن در انسان بسیار مهم هستند. جلبک‏های کلروفیت و بریوفیت برای استخراج این اسیدهای چرب سالم و ضروری مورد استفاده قرار می‏گیرند، ترکیبات زیست فعال و فیتوشیمیایی موجود در جلبک سبب می‏شود که بعنوان یک ترکیب بسیار مفید در صنایع غذایی، دارویی و پزشکی شناخته شوند. ماکرو و میکرو جلبک‌ها منابع ژنتیکی و تنوع زیستی وسیعی داشته که اهمیت آنها را افزایش می‌دهد. آنها در صنایع مختلف آرایشی، بهداشتی، پزشکی کاربرد دارند، همچنین به دلیل ارزش غذایی بالا، داشتن مواد معدنی و کمیباب، پروتئین بالا و اسیدهای چرب غیراشباع در تغذیه انسان، دام و آبزیان مورد استفاده قرار گرفته‌اند. از این رو در مطالعه حاضر خواص، پتانسیل و کاربرد جلبک‏ها بحث شده است.

کلیدواژه‌ها

عنوان مقاله [English]

An overview of the application and importance of algae in fisheries sciences and food industries

نویسندگان [English]

  • m. h. khanjani 1
  • M Sharifinia 2
  • s Hajirezaee 1

1 University of Jiroft, Faculty of Natural Resources, Fisheries Department, Jiroft, Kerman, Iran

2 Shrimp Research Center, Iranian Fisheries Science Research Institute (IFSRI). Agricultural Research, Education and Extension Organization (AREEO). Bushehr, Iran

چکیده [English]

Algae are the most important primary producers that, generally, classified into the two subgroups of microalgae (microscopic) and macroalgae (macroscopic). Seaweeds are important sources of phytochemicals with antioxidant properties that are directly and indirectly involved in pharmaceuticals, medical applications, human nutrition, livestock and aquatic life. Microalgae are considered as an important source of nutrition for the early stages of the growth and development of aquatic larvae. Many products, such as carotenoids, phycobilin, unsaturated fatty acids, polysaccharides, vitamins and biologically active molecules that are important for use in human and aquatic health, have been identified and isolated from algae. The long chain unsaturated fatty acids PUFA (eicosapentaenoic acid (EPA, 3n-20: 5) and dicosohexaenoic acid (DHA, or 3n-22: 6) are crucial for human metabolism. Chlorophyte and bryophyte algae are used to extract these healthy and essential fatty acids. Bioactive and phytochemicals compounds found in the algae make them a very useful compound in the food, pharmaceutical and medical industries. Macro and microalgae have vast genetic resources and high biodiversity that increase their importance. They are widely used in various cosmetics, health and medical industries, as well as because of their nutritional value, high levels of minerals, protein, and unsaturated fatty acids have been used in human, animal and aquatic nutrition. So the properties, potential and uses of algae are discussed in the present study.

کلیدواژه‌ها [English]

  • Phytoplankton
  • Fisheries Sciences
  • Algae
  • Carotenoids
  • Aquaculture

[1]    خانجانی، م. ح.، حیدری، ص. 1388. اهمیت و کاربرد جلبک‏های دریایی در بیوتکنولوژی، ششمین همایش ملی بیوتکنولوژی جمهوری اسلامی ایران. 22 تا 24 مرداد ماه. سالن همایش های برج میلاد، تهران، ایران. 10 صفحه. 

[2]    Sharifinia M., Mahmoudifard A, Gholami K, Namin JI, Ramezanpour Z. Benthic diatom and macroinvertebrate assemblages, a key for evaluation of river health and pollution in the Shahrood River, Iran. Limnology, 2016: 17: 95-109.

[3]    Namin JI, Sharifinia M, Ramezanpour Z. Biodiversity of diatom population in the Masouleh stream, Guilan, Iran. Iranian Journal Taxonomy and Systematic, 2013: 5 (15), 37-48.

[4]    Graham LE, Graham JM, Wilcox LW. Algae (2nd Ed.). Benjamin Cummings. 2009.

[5]    Keshri JP. Algae in medicine. Medicinal Plants: Various Perspectives 2012; 31-50.

[6]    Smit AJ. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol., 2004: 16: 245-262.

[7]    Zhao X, Xue CH, Li ZJ, Cai YP, Liu HY, Qi HT. Antioxidant and hepatoprotective activity of low molecular weight sulfated polysaccharide from Laminaria japonica. J. Appl. Phycol, 2004: 16: 111-115.

[8]    Chanda S, Dave R, Kaneria M, Nagani K. Seaweeds: A novel, untapped source of drugs from sea to combat infectious diseases. In: Current Research, Technology and education topics in Microbiology and Microbial Biotechnology. Mendez-Vilas, ed., FORMATEX., 2010: 473-480.

[9]    Mehta P, et al. Growth and Tolerability of Healthy Term Infants Fed a New Formula Supplemented with DHA from Schizochytrium sp Microalgae. J Vasc Med Surg. 2016: 4:267.

[10]                        L Pérez. Biofuels from Microalgae, A Promising Alternative. Pharm Anal Chem. 2016: 2: e103.

[11]                        Ramirez-Merida LG, et al. Microalgae as Nanofactory for Production of Antimicrobial Molecules. J Nanomedic Nanotechnol. 2015; S6-004.

[12]                        Stoyneva-Gärtner MP and Uzunov BA. An Ethno biological Glance on Globalization Impact on the Traditional Use of Algae and Fungi as Food in Bulgaria. J Nutr Food Sci. 2015; 5: 413.

[13]                        Ebrahimi N, Moein S, Moein M.R. Effects of antioxidants, extraction and determination of protein content of ten species of algae in Persian Gulf and Oman Sea. Thesis of Shiraz University of Medical Sciences, Faculty of Pharmacy, 2010. ﴾In persian﴿.

[14]                        Bita S., Mesbah M, Shahryari A, Ghorbaanpoor M. Biosynthesis of silver nanoparticles using Sargassusm angustifolium seaweed. Journal of Marine Science and Technology, 2015: 14(1), 81-90. (in Persian)

[15]                        Taskin E, Ozturk M, Kurt O. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 2007: 6(24): 2746.

[16]                        Heydari M, Zolgharnein H, Sakhaei N, Mirzaei A, Movahedinia AAntibacterial and antioxidant activities of hydro-alcoholic extracts of some marine algal species from Persian Gulf coastal waters in Booshehr province.Aquatic Physiology and Biotechnology, 2013: 1(1): 49-62. (In Persian)

[17]                        Farasat A, Shokrollahi A, Arabloo M, Gharagheizi F, Mohammadi AH. Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel processing technology. 2013; 115, 201-214.

[18]                        Promya J, Chitmanat C. The effects of Spirulina platensis and Cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the African sharptooth catfish (Clarias gariepinus). International Journal of Agriculture and Biology. 2011; 13, 77-82.

[19]                        Salighezadeh R, Yavari V, Mousavi SM, Zakeri M. Effect of dietary supplement of Spirulina platensis on immune indices complement and lysozyme of benny fish Mesopotamichthys sharpeyi(Günther, 1874). Journal of Aquatic Ecology 2015;5(1): 44-50. (in Persian)

[20]                        Raja R, Shanmugam H, Ganesan V and Carvalho IS (2014) Biomass from Microalgae: An Overview. Oceanography 2014; 2: 118.

[21]                        Suryanarayanan TS and Johnson JA. Fungal Endosymbionts of Macroalgae: Need for Enquiries into Diversity and Technological Potential. Oceanography 2014; 2: 119.

[22]                        Montoya-Gonzalez AH, et al. Isolation of Trichoderma Spp. from Desert Soil, Biocontrol Potential Evaluation and Liquid Culture Production of Conidia Using Agricultural Fertilizers. J Fertil Pestic. 2016; 7:163.

[23]                        Aditya T, Bitu G, Mercy Eleanor G. The Role of Algae in Pharmaceutical Development, Journal of Pharmaceutics and Nanotechnology 2016; Volume 4 , Special Issue: Reviews on Pharmaceutics and Nanotechnology, 82-89.

[24]                        Foroughi M, Akhavanzanjani M, Magahsoudi Z, Ghiasvand R, Khorvash F, Askari G. Stroke and nutrition: a review of studies. Int J Prev Med 2013; 4(Suppl. 2):165–79.

[25]                        Miccoli R, Bianchi C, Penno G, del Prato S. Insulin resistance and atherogenic dyslipidemia. Futur Lipidol 2008; 3(6):651–4.

[26]                        Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008; 295: C849–68.

[27]                        Ku CS, Yang Y, Park Y, Lee J. Health benefits of blue-green algae: prevention of cardio- vascular disease and nonalcoholic fatty liver disease. J Med Food 2013; 16(2): 103–11.

[28]                        Prakash D, Gupta C, Sharma G. Importance of phytochemicals in nutraceuticals. J Chin 874 Med Res Dev 2012; 1(3):70–8.

[29]                        Raposo MFJ, de Morais AMMB. Microalgae for the prevention of cardiovascular disease and stroke, Life Sciences 2014; http://dx.doi.org/10.1016/j.lfs.2014.09.018.

[30]                        Lorenz RT, Cysewski GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 2000; 18:160–7.

[31]                        Bobrov Z, Tracton I, Taunton K, Mathews M. Effectiveness of whole dried Dunaliella salina marine microalgae in the chelating and detoxification of toxic minerals and heavy metals. DetoxPaper100308.pdf; (March 6) at www.interclinical.com.au, 2008. [last assessment on 5 August 2014].

[32]                        Levy Y, Zaltsberg H, Ben-Amotz A, Kanter Y, Aviram M. Dietary supplementation of a natural isomer mixture of beta-carotene inhibits oxidation of LDL derived from patients with diabetes mellitus. Ann Nutr Metab 2000; 44(2):54–60.

[33]                        Chao JC-J,HuangG-H,Wu SJ, Yang SC, ChangNC, et al. Effects of beta-carotene, vitamins C and E on antioxidant status in hyperlipidemc smokers. J Nutr Biochem 2002; 13(7):427-4.

[34]                        Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L. Antioxidant poten tial of microalgae in relation to their phenolic and carotenoid content. J Appl Pychol 2012; 24(6):1477–86.

[35]                        Andújar I, Recio MC, Giner RM, Rios JL. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012. http://dx.doi.org/10.1155/2012/906252. [23 pp.].

[36]                        Bjelakovic G, Nikolova D, Glund LL, Simonetti RG, Glund C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297:842–57.

[37]                        Clarke R, Halsey J, Lewington S, Lonn E, Armitage J, Manson JE, et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause- specific mortality: meta-analysis of 8 randomized trials involving 37485 individuals .Arch Int Med 2010; 170:1622–31.

[38]                        Makariou SE,Michel P, TzoufiMS, Challa A,Milionis HJ. Vitamin D and stroke: promise for prevention and better outcome. Curr Vasc Pharmacol 2012; 12:22–31.

[39]                        Bandarra NM, Pereira PA, Batista I, Vilela M. Fatty acids, sterols and α-tocopherol in Isochrysis galbana. J Foods Lipids 2003; 10:25–34.

[40]                        Guiry M. What is Seaweed? 2001. http://seaweed.ucg.ie/whatisseaweed.html

[41]                        Kazłowski B, Chiu YH, Kazłowska K, Pan CL, Wu CJ. Prevention of Japanese encephalitis virus infections by low-degree-polymerisation sulfated saccharides from Gracilaria sp. and Monostroma nitidum. Food Chemistry 2012; 133(3): 866-874.

[42]                        Mchugh SM, Diamant NE. Effect of age, gender, and parity on anal canal pressures. Digestive Diseases and Sciences 1987; 32(7): 726-736.

[43]                        Molles MC, Cahill JF. Ecology: concepts and applications. Boston, MA: WCB/McGraw-Hill. 1999. p. 482.

[44]                        Yeh ST, Lee CS, Chen JC. Administration of hot-water extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of White shrimp Litopenaeus vannamei. Fish and Shellfish Immunology 2006; 20(3): 332-345.

[45]                        Devaraj S, Jialal I, Vega-Lopez S. Plant-sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arterioscler Thromb Vasc Biol 2004; 24:e25–8.

[46]                        El-Baz FK, Abdoul-Enein AM, El-Baroty GS, Youssef AM, El-Baky HHA. Accumulation of an tioxidant vitamins in Dunaliella salina. J Biol Sci 2002; 2(4):220–3.

[47]                        Steinbrenner J, Hartmut L. Regulation of two carotenoids biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 2001; 125:1810–7.

[48]                        Bar E, Rise M, Vishkautsan M, Arad S. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 1995; 146:527–34.

[49]                        Rebolloso-FuentesMM, Acien-Fernandez GG, Sanchez-Perez JA, Guil-Guerrero JL. Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 2000;70: 345–53.

[50]                        Miranda MS, Cintra RG, Barros SB, Mancini Filho J. Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 1998; 31:1075–9.

[51]                        Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L. Antioxidant poten tial of microalgae in relation to their phenolic and carotenoid content. J Appl Pychol - 2012; 24(6):1477–86.

[52]                        Fabregas J, Herrero C. Vitamin content of four marine microalgae: potential use as source of vitamins in nutrition. J Ind Microbiol 1990; 5:259–64.

[53]                        Mohammady NG. Total, free and conjugated sterolic forms in three microalgae used in mariculture. Z Naturforsch 2004; 59c:619–24.

[54]                        Véron B, Billard C, Dauguet JC. Sterol composition of Phaeodactylum tricornutum as influenced by growth, temperature and light spectral quality. Lipids 1996; 31:989–94.

[55]                        Xue Z, Wan F, Yu W, Liu J, Zhang Z, Kou X, Edible Oil Production From Microalgae: A Review, Eur. J. Lipid Sci. Technol. 2018, 120, 1700428 (1 of 11) DOI: 10.1002/ejlt.201700428.

[56]                        Ramamoorthy A, Premakumari S. Effect of supplementation of Spirulina on hypercholes- terolemic patients. J Food Sci Technol 1996; 33:124–8.

[57]                        Lee EH, Park JE, Yj Choi, Huh KB, Kim WY. A randomized study to establish the effects of Spirulina in type 2 diabetes mellitus patients. Nutr Res Pract 2008; 2:295–300.

[58]                        Torres-Duran PV, Ferreira-Hermozillo A, Juarez-Oropeza NA. Antihyperlipidemic and an tihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids Health Dis 2007; 6:33–40.

[59]                        Radmer RJ. Algal diversity and commercial algal products. Biosci 1996; 46: 263-270

[60]                        Fenoradosoa TA, Ali G, Delattre C, Laroche C, Petit E, Wadouachi A, et al. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. J App Phycol. 2010; 22: 131-137.

[61]                        Bixler HJ, Porse H. A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 2010, DOI 10.1007/s10811-010-9529-3.

[62]                        Metting FB. Biodiversity and application of microalgae. J Indust Microbiol Biotechnol 1996; 17: 477-489

[63]                        Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006; 101: 87-96

[64]                        Lordan et al. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Mar. Drugs 2011, 9, 1056-1100; doi:10.3390/md9061056

[65]                        Benemann J, Oswald WJ. 1996. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. US DOE, Pitburgh Energy Technology Centre

[66]                        Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res 2006; 40: 2799-2815.

[67]                        Perales-Vela HV, Pena- Castro JM, Canizares-Villanueva RO .Heavy metal detoxification in eukaryotic microalgae. Chemosphere 2006; 64: 1-10

[68]                        Hameed MSA, Ebrahim OH. Review biotechnological potential uses of immobilized algae. Int J Agr Biol 2007; 9(1): 183-192

[69]                        Belarbi EH, Molina E, Chisti Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochemistry 2000; 35: 951-69.

[70]                        Besada V, Andrade JM, Schultze F, Gonzalez JJ. Heavy medtals in edible seaweeds commercialized for human consumption. J Marine sys 2009; 75: 305-13.

[71]                        Demirbas A. Production of Biodiesel from Algae Oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2008; 31(2):163-168

[72]                        Bajhaiya AK, Mandotra SK, Suseela MR, Toppo K, Ranade S. Algal Biodiesel: the next generation biofuel for India Asian J Exp Biol Sci 2010; 1(4): 728-739

[73]                        Ginneken VJTV, Helsper JPFG, Visser WD, Keulen HV, Brandenburg WA. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. BioMed Central 2011; 10: 104.

[74]                        Mišurcová L, Kráčmar S, Klejdus B, Vacek J. Nitrogen Content, Dietary Fiber, and Digestibility in Algal Food Products. Czech J Food Sci 2010; 28(1): 27-35.

[75]                        Vo TS, Kim SK. Potential Anti-HIV agents from marine resources: An overview. Mar Drugs 2010; 8: 2871-2892.

[76]                        Pereira L, Critchley AT, Amado AM, Ribeiro-Claro PJA. A Comparative analysis of phycocolloids produced by underutilized versus industrially utilized carrageenophytes (Gigartinales, Rhodophyta). J Appl Phycol. 2009; 21(5): 599-605.

[77]                        Thirumaran G, Arumugam M, Arumugan R, Anantharaman P. Effect of Seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) medikus. Am J Agric Econ 2009; 2(2): 57-66.

 

[78]                        Taha O, El-Kheir A, Fayza, Hammouda, Howayda, El-Hady A. Production of β-carotene and glycerol from Dunaliella bardawil and D. salina isolated from the Egyptian wet-lands Qarun and Bardawil. International conference on Ecological, Environmental and Biological Sciences 2012.

[79]                        Nakagawa H, Umino T, Tasaka Y. Usefulness of Ascophyllum meal as a feed additive for Red sea bream, Pagrus major. Aquaculture 1997;151(1): 275-281.

[80]                        Soler-Vila, A, Coughlan S, Guiry MD, Kraan S. The red alga Porphyra dioica as a fish-feed ingredient for Rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. Journal of Applied Phycology 2009; 21(5): 617-624.

[81]                        Wassef EA, El Masry, MH, Mikhail FR. Growth enhancement and muscle structure of striped mullet, Mugil cephalus L., fingerlings by feeding algal meal‐based diets. Aquaculture Research 2001; 32(s1): 315- 322.

[82]                        Casas M, Portillo G, Aguila N, Rodríguez S, Sánchez I Carrillo S. Effect of the marine algae Sargassum spp. on the productive parameters and cholesterol content of the brown shrimp. Farfantepenaeus californiensis. Revista de Biología Marina y Oceanografía 2006; 41(1): 97-105.

[83]                        Pham MA, Lee K, Lee B, Lim S, Kim S, Lee Y, Heo M, Lee K. Effects of dietary Hizikia fusiformis on growth and immune responses in juvenile Olive flounder (Paralichthys olivaceus). Asian–Australasian Journal of Animal 2006; 19(12): 1769.–1775.

[84]                        Valente LMP, Gouveia A, Rema P, Matos J, Gomes EF, Pinto I.S. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2006; 252(1): 85-91.

[85]                        Ma WCJ, Chung HY, Ang PO, Kim J.S. Enhancement of bromophenol levels in aquacultured Silver seabream (Sparus sarba). Journal of Agriculture Food and Chemistry 2005; 53(6): 2133-2139.

[86]                        Kalla A, YoshimatsuT, Araki T, Zhang DM, Yamamoto T, Sakamoto S. Use of Porphyra spheroplasts as feed additive for Red sea bream. Fisheries Science 2008; 74(1): 104-108.

Shields RJ, Lupatsch I. Algae for Aquaculture and Animal Feeds. Technikfolgenabschätzung – Theorie und Praxis 21. Jg., Heft 1, Juli 2012 . 23-37