مدلسازی عددی بالاروی موج بر روی دیوار ساحلی و عملکرد موج‌شکن مستغرق با استفاده از مدل WCSPH

نوع مقاله: کوتاه

نویسندگان

1 استادیار گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه خلیج فارس بوشهر

2 دانشیار مهندسی سواحل، دانشگاه صنعتی امیرکبیر، تهران

چکیده

در این مقاله برای شبیه سازی پیشروی موج تنها بر روی دیوار ساحلی قائم و همچنین بررسی موج‌شکن مستغرق نفوذناپذیر، از یک مدل عددی لاگرانژی بدون شبکه، به نام مدل هیدرودینامیک ذرات هموار نسبتاً تراکم‌پذیر (WCSPH) استفاده شده است. این مدل، دو بعدی بوده و سیال را به صورت کمی تراکم‌پذیر در نظر می‌گیرد و علاوه بر حل معادلات حاکم بر سیال لزج برای بدست آوردن میدان سرعت و چگالی، از حل معادله حالت برای بدست آوردن فشار استفاده می‌کند. این مسئله باعث کاهش حجم محاسبات نسبت به روش پایه مدل هیدرودینامیک ذرات هموار می‌شود. برای شبیه‌سازی آشفتگی سیال در روند پیشروی موج بر روی موج‌شکن مستغرق نفوذناپذیر و دیوار ساحلی، از مدل آشفتگی SPS که بوسیله تئوری شبیه‌سازی گردابه‌های بزرگ (LES) بدست آمده، استفاده شده است. در تحقیق حاضر، برای بررسی دقت مدل در شبیه‌سازی پیشروی موج بر روی موج‌شکن مستغرق نفوذناپذیر و دیوار ساحلی، نتایج مدل عددی حاضر با نتایج آزمایشگاهی مورد مقایسه قرار گرفته است. همچنین نتایج مدل عددی حاضر با نتایج مدل عددی Rambabua وMani (2005) مورد مقایسه قرار گرفت، که نتایج مدل عددی حاضر از تطابق بهتری با نتایج آزمایشگاهی برخوردار بود. نتایج این تحقیق نشان داد که مدل عددی تهیه شده، ابزاری قوی جهت شبیه‌سازی پیشروی موج بر روی سازه های ساحلی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical modeling of wave Run up over sea wall and performance of submerged breakwater using WCSPH

نویسندگان [English]

  • A Mahmoudi 1
  • M. J Ketabdari 2
1 civil Engineering,Faculty of Engineering, Persian Gulf University,Bushehr, Iran
2 Faculty of Marine Technology, Amirkabir University of Technology
چکیده [English]

In this paper, a linear Lagrangian numerical model is used for simulating the solitary wave propagation over the vertical coastal wall, as well as an Impermeable submerged breakwater, called the relatively compact (GCM) hydrodynamic model of relatively compact particles (WCSPH). This model is two-dimensional and considers the fluid to be weakly compressible. In addition to solving theviscous fluid governing equations for velocity and density field uses the state equation for obtaining the pressure. This reduces the computational volume compared to the base method of the particle hydrodynamic model. To simulate fluid turbulence in the wave propagation process on an impermeable submerged breakwater and vertical seawall the SPS turbulence model, which was obtained by large eddy simulation (LES) approach was used. The results of numerical simulations were compared with laboratory experiments. Also, the results of present numerical model were compared with the numerical model of Rambabua and Mani (2005). The results shown, the WCSPH computations produce better results than those of model of Rambabua and Mani (2005), with respect to the experimental data. The results of this study show that WCSPH method provides a useful tool to investigate the wave propagation over coastal structures

کلیدواژه‌ها [English]

  • Numerical modelling
  • smoothed particle hydrodynamic
  • sea wall
  • submerged breakwaters
  • wave Run up
[1]     Christou, M., Swan, C., Gudmestad, O.T., "The interaction of surface water waves with submerged breakwaters", Coastal Engineering, 55, 945–958, 2008.

[2]     Carevic, D., Prsic, M., Ocvirk, E., "Modelling of Wave Interaction with Submerged Breakwater Using MIKE 21 BW", International Symposium on Water Management and Hydraulic Engineering, Ohrid/Macedonia, 2009.

[3]     Cao, Y.G., Jiang, Ch.B., Bai, Y.Ch., "Numerical study on flow structure near two impermeable trapezoid submerged breakwaters on slop bottoms", Journal of Hydrodynamics, 9th International Conference on Hydrodynamics October 11-15, Shanghai, China, 2010.

[4]     Jie, Ch., Changbo, J., Shixiong, U.,  Wenwei, H., "Numerical study on the characteristics of flow field and wave propagation near submerged breakwater on slope", Acta Oceanol. Sin., Vol.29, No.1, p.88-99, 2010.

[5]     Wiryanto, L. H., "Wave propagation passing over a submerged porous breakwater", Journal of Engineering Mathematics, Vol. 70, pp 129-136, 2010.

[6]     Hajivalie, F., Yeganeh-Bakhtiary, A., Bricker., J., "Numerical Study of the Effect of Submerged Vertical Breakwater Dimension on Wave Hydrodynamics and Vortex Generation", Coastal Engineering Journal, Vol. 57, No. 3, 2015.

[7]     Jia, Q., Dong, Sh., Luo, X.,  Soares, C.G., "Wave transformation over submerged breakwaters by the constrained interpolation profile method", Ocean Engineering, 136 , 294–303, 2017.

[8]     Yueh, C-Y., Chuang, S-H., Wen, C-C., "Bragg reflection of water waves due to submerged wavy plate breakwater", Journal of Hydro-environment Research, doi: https://doi.org/10.1016/j.jher. 2018.04.004, 2018.

[9]     Wang, J., He, G., You, R., Liu, P., "Numerical study on interaction of a solitary wave with the submerged obstacle", Ocean Engineering 158, 1–14, 2018.

[10] Shao, S., "Incompressible SPH simulation of wave breaking and overtopping with turbulence modeling", International Journal for Numerical Methods in Fluids, 50, 597–621, 2006.

[11] Crespo, A.J.C., Gomez-Gesteira, M., Dalrymple, R.A., "3D SPH Simulation of large waves mitigation with a dike",  Journal of Hydraulic Research, Vol. 45, No. 5, pp. 631–642, 2007.

[12] Shao, S, "Incompressible SPH flow model for wave interactions with porous media", Coastal Engineering, 57, 304–316, 2010.

[13] Kim, N.H., Kim, S.R.,  Ko, H.S., "Numerical Simulation of wave transmission over a submerged breakwater in wave flume by using SPH method", The 2010 KSCE Annual Conference Journal, pp.2289-2292, Incheon, Korea, 2010.

[14] Liu, X.,  Xu, H., Shao, S.,  Lin, P., "An improved incompressible SPH model for simulation of wave–structure interaction", Computers & Fluids, Vol 71, pp113–123, 2013.

[15] Mahmoudi, A., Hakimzadeh, H., Ketabdari, M. J., "Simulation of Wave Propagation over a Submerged Breakwater on a Sloped Bed by SPH Method",  International Journal of Offshore and Polar Engineering, Vol. 23, No. 4, pp. 286–291, 2013.

[16] Mansouri, A., Aminnejad, B., "Interaction of Submerged Breakwater by a Solitary Wave Using WCSPH Method", Modelling and Simulation in Engineering, Vol. 2014, Article ID 524824, 2014.

[17] Mahmoudi,A., Hakimzade,H., Ketabdari, M.J., Etemad-Shahidi,A., Cartwright, N., Abyn, H., "Weakly-compressible SPH and Experimental modeling of periodic wave breaking on a plane slope",  International Journal of Maritime Technolog, Vol.5, pp. 63-76, 2016. 

[18] Yeganeh-Bakhtiary, A., Houshangi, H., Hajivalie, F., Abolfathi, S., "A Numerical Study on Hydrodynamics of Standing Waves in Front of Caisson Breakwaters with WCSPH Model", Coastal Engineering Journal, Vol. 59, No. 1, 2017. 

[19] Monaghan, J. J., "Simulating free surface flows with SPH", Journal Computational Physics, 110, pp. 399-406, 1994. 

[20] Monaghan, J.  J., "Smoothed Particle Hydrodynamics", Reports on Progress in Physics, 68: 1703-1759, 2005.

 

[21] Wendland, H., "Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree", Advances in computational Mathematics, Vol. 4, p. 389– 396, 1995.

[22] Lo, E., Shao, S., "Simulation of near-shore solitary wave mechanics by an incompressible SPH method", Applied Ocean Research, 24, 275-286, 2002.

[23] Dalrymple, R. A., Rogers, B., "Numerical modeling of water waves with the SPH method", Coastal Engineering, 53, 141-147, 2006.

[24] Xu, R., "An improved incompressible smoothed particle hydrodynamics method and its application in free-surface simulations",  PhD Dissertation, University of Manchester, UK, 2010.

[25] Liu S.X., Wang X.T., Li M.G., Guo M.Y., "Active absorption wave maker system for irregular waves", China Ocean Engineering, Vol 17, No 2, pp 203-214, 2003.

[26] Abdul Khader, M.H., Rai, S.P., "A study of submerged breakwaters", Journal of Hydraulic Research 18, 113–121, 1980.

[27] Rambabu, A.Ch., and Mani, J.S., "Numerical prediction of performance of submerged breakwaters", Ocean Engineering 32, 1235–1246, 2005.