آنالیز حرکت هدف زیر دریا تنها با زاویه سمت بر مبنای فیلتر کالمن مکعبی درجه پنج و هموارساز RTS

نوع مقاله: کوتاه

نویسندگان

1 کارشناس ارشد مهندسی برق، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 استاد دانشکده مهندسی برق، دانشگاه فردوسی مشهد

3 دانشیار دانشکده مهندسی برق، دانشگاه فردوسی مشهد

چکیده

مساله آنالیز حرکت هدف که با عنوان ردیابی هدف شناخته می‌شود به تخمین متغیرهای حالت هدف شامل موقعیت و سرعت آن می‌پردازد. ردیابی اهداف زیردریا با توجه به قدرت اختفاء تجهیزات مغروق در آب نظیر زیردریایی‌ها از اهمیت ویژه برخوردار است. در این مقاله، تنها از اندازه‌گیری سمت برای ردیابی تک هدف زیر دریا استفاده می‌شود که به عنوان یکی از روش‌های ردیابی مهم در کاربردهای نظامی به شمار می‌رود. هدف از این مقاله ارائه ساختاری جدید برای حل مساله ردیابی تنها با زاویه سمت در مختصات دو بعدی است. این روش مبتنی بر ترکیب فیلتر کالمن مکعبی درجه پنج و هموارساز RTS می‌باشد. ساختار ارائه شده شامل دو مرحله فیلتر کردن مستقیم و هموارسازی بازگشتی است. آنالیز مونت‌کارلو برای نتایج شبیه‌سازی‌ حاکی از آن است که استفاده از این ساختار می‌تواند به عنوان یک را‌‌ه‌حل جایگزین برای ردیابی اهداف زیردریا تنها با زاویه سمت مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bearings-Only Underwater Target Motion Analysis Based on Fifth-Degree Cubature Kalman Filter and RTS Smoother

نویسندگان [English]

  • M. A. Ahmadpour Kakhk 1
  • N Pariz 2
  • M B Naghibi Sistani 3
1 Department of Electrical Engineering, faculty of Engineering, ferdowsi university of mashhad, mashhad, Iran
2 Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

target motion analysis problem known as target tracking addresses to estimate target state variables include position and speed. Underwater target tracking is significant importance due to underwater equipment have an ability to stay hidden. In this paper, bearings-only measurement Which is considered one of the most important tracking methods in military applications is used for tracking of the single underwater target. Purpose of this paper is to present novel structure for solving bearings-only tracking problem in the 2D coordinate. This method is based on a combination of fifth-degree cubature Kalman filter and Rauch-Tung-Striebel (RTS) smoother. Proposed structure includes two levels named forward filtering and backward smoothing. Monte Carlo analysis of the Simulation results shows that this structure can be used as an alternative solution for bearings-only underwater target tracking.

کلیدواژه‌ها [English]

  • Target Tracking
  • State Estimation
  • Nonlinear Filter
  • Fifth-Degree Cubature Kalman Filter
  • Passive Target Tracking
 [1]          Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YBS Publishing, 3rd Edition , 1995.

 [2]          V. J. Aidala, “Kalman Filter Behavior in Tracking Applications,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, no. 1, pp. 29–39, Jan. 1979.

 [3]          V. Aidala and S. Hammel, “Utilization of Modified Polar Coordinates for Bearings-Only Tracking,” IEEE Transactions on Automatic Control, vol. AC-28, no. 3, pp. 283–294, March 1983.

 [4]          T. L. Song and J. L. Speyer, “A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements,” IEEE Transactions on Automatic Control, vol. 30, no. 10, pp. 940–949, Oct. 1985.

 [5]          N. Peach, “Bearings-only tracking using a set of range-parameterised extended Kalman filters,” IEE Proceedings Control Theory and Applications, vol. 142, no. 1, pp. 73–80, Jan. 1995.

 [6]          N. Modalavalasa, G. S. B. Rao, K. S. Prasad, L. Ganesh, and M. Kumar, “A new method of target tracking by EKF using bearing and elevation measurements for underwater environment,” Robotics and Autonomous Systems, vol. 74, pp. 221–228, Dec. 2015.

 [7]          M. T. Sabet, A. R. Fathi, and H. R. M. Daniali, “Optimal design of the Own Ship maneuver in the bearing-only target motion analysis problem using a heuristically supervised Extended Kalman Filter,” Ocean Engineering, vol. 123, pp. 146–153, Sept. 2016.

 [8]          S. Sadhu, S. Mondal, M. Srinivasan, and T. K. Ghoshal, “Sigma point Kalman filter for bearing only tracking,” Signal Processing, vol. 86, no. 12, pp. 3769–3777, Dec. 2006.

 [9]          Arasaratnam and S. Haykin, “Cubature kalman filters,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, June 2009.

 [10]      P. H. Leong, S. Arulampalam, T. A. Lamahewa, and T. D. Abhayapala, “A Gaussian-sum based cubature Kalman filter for bearings-only tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 2, pp. 1161–1176, April 2013.

 [11]      H. Wu, S. Chen, B. Yang, and X. Luo, “Range parameterised orthogonal simplex cubature Kalman filter for bearings only measurements,” IET Science, Measurement & Technology, pp. 1-5, 2016.

 [12]      H. Wu, S. Chen, B. Yang, and K. Chen, “Robust Derivative-Free Cubature Kalman Filter for Bearings-Only Tracking,” Journal of Guidance, Control, and Dynamics, pp. 1–6, 2016.

 [13]      K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 910–927, 2000.

 [14]      R. Radhakrishnan, A. K. Singh, S. Bhaumik, and N. K. Tomar, “Quadrature Filters for Underwater Passive Bearings-Only Target Tracking,” in IEEE Sensor Signal Processing for Defence (SSPD), United Kingdom,2015.

 [15]      N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” in IEE Proceedings - Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.

 [16]      N. Gordon, B. Ristic, and S. Arulampalam, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Boston, Artech House, 2004.

 [17]      T. Brehard and J. P. Le Cadre, “Hierarchical particle filter for bearings-only tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 4, pp. 1567–1585, Oct. 2007.

 [18]      P. B. Quang, C. Musso, and F. Le Gland, “Particle filtering and the laplace method for target tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 1, pp. 350–366, Feb. 2016.

 [19]      J. Y. Yu, M. J. Coates, M. G. Rabbat, and S. Blouin, “A Distributed Particle Filter for Bearings-Only Tracking on Spherical Surfaces,” IEEE Signal Processing Letters, vol. 23, no. 3, pp. 326–330, March 2016.

 [20]      B. Ristic and M. S. Arulampalam, “Tracking a manoeuvring target using angle-only measurements: algorithms and performance,” Signal processing, vol. 83, no. 6, pp. 1223–1238, 2003.

 [21]      S. C. Nardone, A. G. Lindgren, and K. F. Gong, “Fundamental properties and performance of conventional bearings-only target motion analysis,” IEEE Transactions on Automatic Control, vol. 29, no. 9, pp. 775–787, 1984.

 [22]      Y. J. Zhang and G. Z. Xu, “Bearings-only target motion analysis via instrumental variable estimation,” IEEE Transactions on signal processing, vol. 58, no. 11, pp. 5523–5533, Nov. 2010.

 [23]      G. Lingren and K. F. Gong, “Position and velocity estimation via bearing observations,” IEEE Transactions on Aerospace andElectronic Systems, vol. AES-14, no. 4, pp. 564–577, July 1978.

 [24]      S. C. Nardone and V. J. Aidala, “Observability criteria for bearings-only target motion analysis,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-18, no. 2, pp. 162–166, March 1981.

 [25]      S. E. Hammel and V. J. Aidala, “Observability requirements for three-dimensional tracking via angle measurements,” IEEE Transactions on Aerospace and Electronic Systems,vol. AES-21, no. 2, pp. 200–207, March 1985.

 [26]      Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. John Wiley & Sons, 2004.

 [27]      R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

 [28]      B. Jia, M. Xin, and Y. Cheng, “High-degree cubature Kalman filter,” Automatica, vol. 49, no. 2, pp. 510–518, 2013.

 [29]      H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of linear dynamic systems,” AIAA Journal, vol. 3(8), pp. 1445–1450, 1965.