تجزیه ‌و تحلیل روش‌های عددی به منظور شبیه‌سازی مبدل‌های انرژی امواج از نوع جاذب‌های نقطه‌ای

نوع مقاله: مروری

نویسندگان

1 استادیار دکتری دانشکده علوم و فنون نوین دانشگاه تهران

2 دانشجوی دکتری دانشکده علوم و فنون نوین دانشگاه تهران

چکیده

در طول چند دهه گذشته، انرژی موج توجه بسیاری محققان برای بهره‌برداری از انرژی اقیانوس‌ها و دریاها را به خود جلب نموده است. صنعت، روش‌های بسیاری که وابسته به مکان دریافت انرژی هستند، مانند پس‌زنی، جاذب نقطه‌ای، سیستم بالا نقطه­ای و سیستم تقلیل دهنده پیشنهاد کرده است. به‌طور خاص، بسیاری از محققان بر مدل‌سازی جاذب نقطه‌ای شناور که تصور می‌شود فنّاوری مقرون به‌صرفه‌تری برای استخراج انرژی از امواج است، متمرکزشده‌اند. برای مدل‌سازی چنین دستگاهی، چندین روش مدل‌سازی، ازجمله روش تحلیلی، روش معادلات مرزی پیوسته، روش معادلات ناویه استوکس و روش‌های تجربی استفاده‌شده است. برای کمک به توسعه تبدیل انرژی موج این گزارش فناوری­های گسترده برای مدل‌سازی جاذب نقطه‌ای شناور را بررسی می­کند. نتایج حاصل از این پژوهش نشان می­دهد کهاز لحاظ مقرون‌به‌صرفه بودن، انتخاب یک روش برای شبیه‌سازی نقطه‌ای شناور و دستگاه‌های مبدل انرژی موج جاذب، شامل این موضوع است که قابلیت روش را برای توصیف فیزیکی جریان مورد نظر مشخص کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers

نویسندگان [English]

  • Mohammad Hossein Jahangir 1
  • Ali Farhadi 2
1 Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies, Tehran, Iran
2 Renewable energies and environment Dep., University of Tehran
چکیده [English]

During the past few decades, wave energy has received significant attention for harnessing ocean energy. Industry has proposed many topologies such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber, which is thought to be the most cost-efficient technology to extract wave energy. To model such devices, several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. To assist the development of wave energy conversion (WEC) technologies, this report extensively reviews the methods for modeling the floating-point absorber.

کلیدواژه‌ها [English]

  • Wave Energy Converter
  • Wave Theory
  • Floating-Point Absorber
  • Wave Body Interactionو Computational Fluid Dynamics
[1]     Ross, D., Power from sea waves, 1st ed. United Kindom: Oxford University Press, 1995.

[2]     Salter, S., "Wave power," Nature, pp. 720-724, 1974.

[3]     Wavestar. [Online]. http://wavestarenergy.com/

[4]     Wave Dragon. [Online]. http://www.wavedragon.net/

[5]     IEA-OES. (2011, May) International Energy Agency Ocean Energy System. [Online]. http://www.iea-oceans.org/index.asp

[6]     IEC. 2011. International Electrotchnical Commission Marine Energy Technical Committee. [Online]. http://www.bsigroup .com/en/

[7]     Standards-and-Publications/Committee- embers/Committee-member-news/Summer-2007/New-Committee-IECTC-114-Marine-Energy/

[8]     McCabe, A., Bradshaw, A., Meadowcroft, J., and Aggidis, G., "Developments in the design of the PS Frog Mk 5 wave energy converter," Renewable Energy, vol. 31, no. 2, pp. 141-151, 2006.

[9]     Kraemmer, D., Ohl, C., and McCormick, M., "Comparison of experimental and theoretical results of the motions of a McCabe wave pump," in Proceedings of Fourth European Wave Power Conference, vol. 1, Aalborg, Denmark, 2000.

[10] Pelamis Wave Power. [Online]. http://www.pelamiswave.com/

[11] Salter, S., "The swinging mace," in Proceedings of Workshop Wave Energy R&D, 1992, pp. 197-206.

[12] Whittaker, T., Collier, D., Folley, M., Osterried, M., Henry, A., and Crowley, M., "The development of Oyster--A shallow water surging wave energy converter," in Proceedings of 7th European Wave and Tidal Energy Conference, 2007, pp. 11-14.

[13] Aquamarine Power Oyster. [Online]. http://www.aquamarinepower.com/technology

[14] Heath, T., Whittaker, T., and Boake, C., "The design, construction and operation of the LIMPET wave energy converter," in Proceedings of Proc. 4th European Wave Energy Conference, Islay, Scotland, 2000, pp. 49-55.

[15] Ohneda, H., Igarashi, S., Shinbo, O., Sekihara, S., Suzuki, K., Kubota, H., Ogino, H., and Morita, H., "Construction procedure of a wave power extracting caisson breakwater," in Proceedings of 3rd Symposium on Ocean Energy Utilization, 1991, p. 171–179.

[16] Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., and Petroncini, S., "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, vol. 6, no. 5, pp. 405-431, 2002.

[17] Kofoed, J., Frigaard, P., Friis-Madsen, E., and Sørensen, H., "Prototype testing of the wave energy converter wave dragon," Renewable Energy, vol. 31, no. 2, pp. 181-189, 2006.

[18] Vicinanza, D. and Frigaard, P., "Wave pressure acting on a seawave slot-cone generator," Coastal Engineering, vol. 55, no. 6, pp. 553-568, 2008.

[19] Lilypad. [Online]. http://www.energyisland.com/projects/lilypad/lilypad.html

[20] Weber, J., Mouwen, F., Parish, A., and Robertson, D., "Wavebob--research & development network and tools in the context of systems engineering," in Proceedings of Eighth European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009.

[21] Salter, S. and Lin, C.-P., "The sloped IPS wave energy converter," in Proceedings of 2nd European Wave Energy Conference, Lisbon, Portugal, 1995, pp. 337–344

[22] Payne, G. S., Taylor, J. R. M., Bruce, T., and Parkin, P., "Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 1: Numerical modelling," Ocean Engineering, vol. 35, no. 3-4, pp. 333-341, 2008.

[23] Payne, G. S., Taylor, J. R. M., Bruce, T., and Parkin, P., "Assessment of boundary-element method for modelling a free-floating sloped wave energy device. Part 2: Experimental validation," Ocean Engineering, vol. 35, no. 3-4, pp. 342-357, 2008.

[24] Evans, D., "Power from water waves," Annual Review of Fluid Mechanics, vol. 13, no. 1, pp. 157-187, 1981.

[25] Falcão, A. F. d. O., "Wave energy utilization: A review of the technologies," Renewable and Sustainable Energy Reviews, 2010.

[26] Sarmento, A. J. N. A., Neumann, F., and Brito-Meto, A., "NON-TECHNICAL BARRIERS TO LARGE-SCALE WAVE ENERGY UTILISATION," in Proceedings of 2004 NEW AND RENEWABLE ENERGY TECHNOLOGIES FOR SUSTAINABLE DEVELOPMENT, Evora, Portugal, 2004, pp. 225-233.

[27] Energy, U. S. D. o. (2010, December) DOE. [Online]. http://www1.eere.energy.gov/windandhydro/hydrokinetic/listings.aspx?type=Tech

[28] Falnes, J., "A review of wave-energy extraction," Marine Structures, vol. 20, no. 4, pp. 185-201, 2007.

[29] Khan, J., Bhuyan,G, and Moshref, A., "An Assessment of Variable Characteristics of the Pacific Northwest Region’sWave and Tidal Current Power Resources, and their Interaction with Electricity Demand & Implications for Large Scale Development Scenarios," PowerTech Lab, Surrey, Internal Report 2008.

[30] Brooke, J., Wave Energy Conversion: Elsevier Science, 2003.

[31] Cruz, J., Ocean Wave Energy, 1st ed. Berlin, Germany: Springer, 2008.

[32] .

[33] Budal, K. and Falnes, J., "Power generation from ocean waves using a resonant oscillating system," Marine Science Communication, vol. 1, pp. 269-288, 1975.

[34] Evans, D., "A theory for wave-power absorption by oscillating bodies," Journal of Fluid Mechanics, vol. 77, no. 01, pp. 1-25, 1976.

[35] Mei, C. C., "Power extraction from water waves," Journal of Ship Research, vol. 20, pp. 63-66, 1976.

[36] Newman, J., "The interaction of stationary vessels with regular waves," in Proceedings of 11th Symposium on Naval Hydrodynamics, 1976, pp. 491-501.

[37] Budal, K. and Falnes, J., "Interacting point absorbers with controlled motion," Power from sea waves, pp. 381-399, 1980.

[38] Evans, D., "Maximum wave-power absorption under motion constraints," Applied Ocean Research, vol. 3, no. 4, pp. 200-203, 1981.

[39] Pizer, D. J., "Maximum wave-power absorption of point absorbers under motion constraints," Applied Ocean Research, vol. 15, pp. 227-234, 1993.

[40] Garnaud, X. and Mei, C., "Wave-power extraction by a compact array of buoys," Journal of Fluid Mechanics, vol. 635, pp. 389-413, 2009.

[41] Yeung, R. W., "Added mass and damping of a vertical cylinder in finite-depth waters," applied ocean research, vol. 3, no. 3, pp. 119-133, April 1980.

[42] Mclver, P., "Wave forces on arrays of floating bodies," Journal of Engineering Mathematics, vol. 18, no. 4, pp. 273-285, 1984.

[43] Ferrant, P., Touzé, D. L., and Pelletier, K., "Non-linear time-domain models for irregular wave diffraction about offshore structures," International Journal for Numerical Methods in Fluids, vol. 43, no. 10-11, pp. 1257-1277, 2003.

[44] Vinayan, V. and Kinnas, S., "A numerical nonlinear analysis of two-dimensional ventilating entry of surface-piercing hydrofoils with effects of gravity," Journal of Fluid Mechanics, in press.

[45] Tsynkov, S., "Numerical solution of problems on unbounded domains. A review* 1," Applied Numerical Mathematics, vol. 27, no. 4, pp. 465-532, 1998.

[46] Israeli, M. and Orszag, S., "Approximation of radiation boundary conditions," Journal of Computational Physics, vol. 41, no. 1, pp. 115-135, 1981.

[47] Grilli, S. and Horrillo, J., "Numerical generation and absorption of fully nonlinear periodic waves," Journal of engineering mechanics, vol. 123, no. 10, pp. 1060-1069, 1997.

[48] Romate, J., "Absorbing boundary conditions for free surface waves," Journal of Computational Physics, vol. 99, no. 1, pp. 135-145, 1992.

[49] Patankar, S. V. and Spalding, D. B., "A calculation procedure for heat, mass, and momentum transfer in three-dimensional flows," Int. J. Heat Mass Transfer, vol. 15, p. 1787, 1972.

[50] Patankar, S. V., "Numerical heat transfer and fluid flow," Washington, DC, Hemisphere Publishing Corp., 1980. 210 p., 1980.

[51] Ferziger, J. H. and Peric, M., Computational methods for fluid dynamics.: Springer, 2002.

[52] Gentaz, L., Alessandrini, B., and Delhommeau, G., "2D nonlinear diffraction around free surface piercing body in a viscous numerical wave tank," in Proceedings of 9th Int

[53] Bhinder, M., Mingham, C., Causon, D., Rahmati, M., Aggidis, G., and Chaplin, R., "Numerical and Experimental Study of a Surging Point Absorber Wave Energy Converter," in Proceedings of The 8th European Wave and Tidal Energy Conference , 2009.

[54] Yu, Y.-H. and Li, Y., "A RANS Simulation for the Heave Response of a Two-Body Floating Point Wave Absorber," in Proceedings of 21st International Offshore (Ocean) and Polar Engineering Conference, Maui, Hi, United States, 2011.

[55] Cho, Y., Kim, M., Kim, M., and Sim, S., "On the flushing effect and the likelihood of the environment friendly vertical breakwater consist of immersed water channel and water chamber as a wave energy extraction measure," in Proceedings of proceedings of the seventheeth intenational offshore and polar engineering conference, Lisbon,Portugal, 2007, pp. 2621-2627.

[56] Monaghan, J. J., "An introduction to SPH," Computer Physics Communication, vol. 48, pp. 88-96, 1988.

[57] Babarit, a. H. J. M. M. J. K. A. M. T. K. J., Numerical benchmarking study of a selection of wave energy converters., 212, vol. 41.

[58] Nishimura, N., "Fast multipole accelerated boundary integral equation methods," Applied Mechanics Reviews, vol. 55, p. 299, 2002.

[59] Zhao, Y. and Graham, J., "An iterative method for boundary element solution of large offshore structures using the GMRES solver," Ocean engineering, vol. 23, no. 6, pp. 483-495, 1996.

[60] Shapira, Y., Matrix-based multigrid: theory and applications.: Springer Verlag, 2008, vol. 2.

[61] Falnes, J., "Optimum Control of Oscillation of Wave Energy Converters," in Proceedings of Proceedings of the Eleventh International Offshore and Polar Engineering Conference,June 17-22, Stavanger,Norway, 2001, pp. 567-574.