مدل سازی برخورد سونامی بر پایه‌های پل با چیدمان متفاوت به روشSPH

نوع مقاله: پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس

2 دانشجوی دکتری دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس

چکیده

فاجعه سونامی یکی از مخرب ترین مخاطرات طبیعی است که علاوه بر گرفتن جان افراد باعث تخریب زیر ساخت‌ها از جمله ساختمان‌ها و پل‌ها می‌گردد.. در سالهای اخیر روش لاگرانژی هیدرودینامیک ذرات هموار (SPH) به عنوان روش بدون شبکه برای بررسی هیدرودینامیک سیالات و مدلسازی سطح آزاد جریان استفاده می‌شود. در این مقاله برای بررسی اثر هیدرودینامیک موج سونامی، ستونهای با فاصله‌ مختلف بین آنها با استفاده از روش SPH شبیه‌سازی شده است. ابتدا مدل‌سازی انجام شده با نتایج آزمایشگاهی صحت سنجی شد و نتایج دارای تطابق قابل قبولی در مقایسه با داده‌های تحقیقات پیشین بوده است. برای بررسی انسداد، چهار حالت با در نظر گرفتن دو و سه ستون در مدل شبیه‌سازی شده است. نتایج نشان داد که هرچه فاصله بین پایه‌ها بیشتر باشد؛ سرعت در کف زیاد‌تر می‌شود. همچنین با کاهش فاصله بین ستون‌ها مقدار متوسط نیروی وارد بر ستون‌ها افزایش می‌یابد. بنابراین در سازه‌هایی با چنین شرایطی باید اثر فاصله بر سرعت سیال و نیروی وارده را بطور همزمان در نظر گرفت و حالت بهینه را با توجه به شرایط مسئله انتخاب نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of the tsunami waves interaction with bridge piers with different arrangements using SPH

نویسندگان [English]

  • R Panahi 1
  • A Parizadeh 2
2 Department of Civil and Environmental Engineering, Tarbiat Modares University
چکیده [English]

A tsunami disaster is one of the most devastating natural hazards; it not only causes loss of life, but also destroys infrastructure such as buildings and bridges. In recent years, the Smoothed Particle Hydrodynamics (SPH) method is used as a mesh-free method for modeling free surface flows and analyzing fluid hydrodynamics. In this paper, the tsunami wave hydrodynamic effect on vertical columns with different distance between them is investigated with SPH model. First, the modeling was verified with laboratory results. The modeling results have been consistent with previous researches data. Then, to investigate blockage, four different state are modeled with two and three columns. The results showed that as the distance between the bases is higher, the velocity in the floor increases. Also, reducing the distance between the columns increases the average of force applied to the columns. Therefore, in structures with such conditions, the effect of distance on the fluid velocity and forces should be considered at the same time and the optimal state according to the problem conditions should be selected.

کلیدواژه‌ها [English]

  • bridge piers
  • wave-structure interaction
  • SPH
  • hydrodynamic force
  • tsunami wave
[1] Wei, Z, Dalrymple, R.A, Hérault, A, Bilotta, G, Rustico, E and Yeh, H, "SPH modeling of dynamic impact of tsunami bore on bridge piers", Coastal Engineering, 2015.

[2] Ramsden, Jerald D, and Fredric R, "Forces on vertical wall caused by incident bores." Journal of Waterway, Port, Coastal, and Ocean Engineering, 1990.

[3] Gómez-Gesteira, M and Dalrymple, R.A, "Using a three-dimensional Smoothed Particle Hydrodynamics method for wave impact on a tall structure",  in J. Waterw. Port Coast. Ocean Eng. 2004.

[4] Arnason, H, Petroff, C, & Yeh, H, "Tsunami bore impingement onto a vertical column" , in J. Disaster Reseach, 2009.

[5] Lau T.L, Ohmachi T, Inoue S, Lukkunaprasit. P,  "Experimental and numerical modeling of tsunami force on bridge decks", in: M. Mokhtari (Ed.)Tsunami – A Growing Disaster, INTECH Open Access Publisher Vienna, Austria, 2011.

[6] St-Germain, P, Nistor, I, Townsend, R, and Shibayama, T. "Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores." in J. Waterw. Port Coast. Ocean Engineering, 2014.

[7] Wei Z , Dalrymple RA , Hérault A , Bilotta G , Rustico E , Yeh H . "SPH modeling of dynamic impact of tsunami bore on bridge piers". Coast Engineering, 2015.

[8] Sarfaraz M , Pak A . "SPH numerical simulation of tsunami wave forces impinged on bridge superstructures". Coast Engineering, 2017.

[9] Wu K , Yang D , Wright N . "A coupled SPH-DEM model for fluid–structure in- teraction problems with free-surface flow and structural failure". Comput Struct, 2016.

[10]           Markauskas D , Kruggel-Emden H , Sivanesapillai R , Steeb H . "Comparative study on mesh-based and mesh-less coupled CFD–DEM methods to model particle-laden flow". Powder Technol, 2017.

[11]           Violeau D, Rogers B.D, "Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future ." in J. Hydraul. Reserch, 2016.

[12]           Liu G.R, Liu M.B, "Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific." Singapore, 2003.

[13]           Altomare C., Domínguez J.M., Crespo A.J.C., Suzuki T., Caceres I., Gómez- Gesteira M., "Hybridization of the wave propagation model SWASH and the neshfree particle method SPH for real coastal applications." Coast. Eng. J. 57 (2015)

[14]           Cunningham L.S, Rogers B.D, Pringgana G, "Tsunami wave and structure interaction: an investigation with smoothed-particle hydrodynamics." ICE J. Eng. Comput. Mech., 2014.

[15]           Souto-Iglesias A, Delorme L, Pérez-Rojas L, Abril-Pérez S, "Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics", Ocean Eng., 2006.

[16]           Heller V , Bruggemann M , Spinneken J , Rogers BD, "Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics". Coast Eng., 2016.

[17]           Vacondio R, Mignosa P, Pagani S, "3D SPH numerical simulation of the wave generated by the Vajont rockslide", Adv. Water Resour., 2013.

[18]           Wu J, Zhang H, Dalrymple R, Herault A, "Numerical modeling of dam-break flood in city layouts including underground spaces using gpu-based sph method", J. Hydrodyn., 2013.

[19]           Bobet A , Fakhimi A , Johnson S , Morris J , Tonon F , Yeung MR . "Numerical models in discontinuous media: review of advances for rock mechanics applications." J Geotech Geoenviron Eng., 2009.

[20]           Koshizuka S , Nobe A , Oka Y . "Numerical analysis of breaking waves using the moving particle semi-implicit method". Int J Numer Methods Fluids, 1998.

[21]           Doring M , Oger G , Alessandrini B , Ferrant P. "SPH simulations of floating bodies in waves". In: Proceedings of the ASME 2004 third international conference on offshore mechanics and arctic engineering; 2004.

[22]            Rogers BD , Dalrymple RA , Stansby PK . Simulation of caisson breakwater movement using 2-D SPH. J Hydraul Res., 2010.

[23]           Canelas R , Ferreira RML , Crespo AJC , Dominguez JM . "A generalized SPH-DEM dis- cretization for the modelling of complex multiphasic free surface flows". In: Proceed- ings of the eighth international SPHERIC workshop, 2013.

[24]           Sun X , Sakai M , Yamada Y . "Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method". J Comput Phys., 2013.

[25]           Ren B , Jin Z , Gao R , Wang Y , Xu Z . "SPH-DEM modeling of the hydraulic stability of 2D blocks on a slope". J Waterw Port Coast Ocean Eng., 2014.

[26]           Wu K , Yang D , Wright N . "A coupled SPH-DEM model for fluid–structure in- teraction problems with free-surface flow and structural failure". Comput Struct., 2016.

[27]           Crespo AJC., Domínguez JM., Rogers BD., Gómez-Gesteira M., Longshaw S., Canelas RB., Vacondio R., Barreiro A., García-Feal O., "DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)". Computer Physics Communications, 2015.

[28]           Monaghan, J.J., "Simulating Free Surface Flows with SPH", J. Comput. Phys., 1994.

[29]           Monaghan, J.J., "Smoothed Particle Hydrodynamics", Annu. Rev. Astron. Astrophys., 1992.

[30]           Dalrymple, R.A. , Rogers, B.D.," Numerical modeling of water waves with the SPH method", Coastal Eng., 2006.

[31]           Smagorinsky, J., "General circulation experiments with the primitive equations: I. the basic experiment", Mon. Weather Rev., 1963.