مروری بر روش های مسیریابی انرژی آگاه مبتنی بر ناحیه‌بندی فیزیکی در شبکه‌های حسگر صوتی متراکم و اینترنت اشیاء زیرآبی

نوع مقاله : مروری

نویسندگان

1 پژوهشگر همکار (دکتری)، گروه مهندسی کامپیوتر، دانشگاه خلیج فارس

2 دانشجوی دکتری، گروه مهندسی مخابرات، دانشگاه سیستان و بلوچستان

3 دانشیار، گروه مهندسی کامپیوتر، دانشگاه خلیج فارس

چکیده

شبکه های مخابراتی صوتی در زیرآب دارای کاربردهای فراوان در صنایع مختلف از جمله نفت و گاز می باشد. مساله طول عمر گره ها و پایداری شبکه برای انتقال اطلاعات مهم ترین پارامتر در طراحی این شبکه ها است زیرا معمولا تعویض باتری به دلیل شرایط پیچیده نصب حسگرها در زیرآب، به راحتی امکان پذیر نیست. بنابراین بهبود مصرف انرژی شبکه بسیار مهم است تا جایی که باتری‌ها نهایت طول عمر را داشته باشند. در این بین، از طریق بهینه سازی فرایند مسیریابی می‌توان به شکل موثرتری به کاهش مصرف انرژی کمک کرد. هدف از این مطالعه، مرور نظام مند و تحلیل روند طراحی روش های مسیریابی و یافتن افق‌هایی در جهت رهیافت های پیشرفته تر است. در این تحقیق، تمرکز به صورت ویژه بر طراحی مبتنی بر ناحیه بندی فیزیکی است. مقصود از ناحیه بندی فیزیکی صرفا یک بخش بندی مجازی محیط سه بعدی زیرآب است که به منظور انتقال بهتر و انرژی آگاه بسته های اطلاعاتی در یک شبکه مخابراتی زیرآبی با عناصر حسگری صوتی ​(و یا در حالت کلی تر در یک بستر اینترنت اشیاء زیرآبی) صورت می گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Systematic Review on Energy-Aware Routing Techniques Based on Physical Zoning in Dense Acoustic Sensor Networks and Internet of Underwater Things

نویسندگان [English]

  • Mohammad R. Khosravi 1
  • Mohammad K. Moghimi 2
  • Habib Rostami 3
1 Department of Computer Engineering, Persian Gulf University, Iran
2 Electrical Engineering, USB, Iran
3 Department of Computer Engineering, Persian Gulf University, Iran
چکیده [English]

Acoustic sensor networks are placed in underwater environment and have many applications in various industries like oil and gas. The lifetime of underwater nodes is the most important factor in design of these networks for data communications because battery replacement is usually difficult due to complicated technical issues of underwater sensors. Therefore, improving energy consumption is very important to reach the maximum lifetime of energy sources. Routing protocols can effectively help to reduce energy consumption. Here, we have done a systematic review on a class of routing techniques entitled physically-constrained protocols with 3D space zoning. This physical segmentation of the 3D underwater space is virtually done towards more efficient and energy-aware data forwarding in internet of underwater things (IoUT) platform.

کلیدواژه‌ها [English]

  • Underwater Sensor Networks
  • Battery Lifetime
  • Routing Protocols
  • Physical Zoning
  • Packet Forwarding
  1. Xie, J. Cui, L. Lao, VBF: vector-based forwarding protocol for underwater sensor networks, in: Proceedings of international IFIP conference, pp. 1216–1221, 2006.
  2. Yan, Z. Shi, J. Cui, DBR: depth-based routing for underwater sensor networks, in: Proceedings of the 7th international IFIP-TC6 networking conference on adhoc and sensor networks, 2008.
  3. Ayaz, I. Baig, A. Abdullah, I. Faye, A survey on routing techniques in underwater wireless sensor networks, J. Network and Computer Applications 34, pp. 1908–1927, 2011.
  4. Priyadarshi, B. Gupta. A. Anurag, Wireless Sensor Networks Deployment: A Result Oriented Analysis, Wireless Personal Communications, 2020, No. 4, pp 20-27.
  5. Nicolaouy, A. See, P. Xie, J. Cui, D. Maggiorini, Improving the Robustness of Location-Based Routing for Underwater Sensor Networks, IEEE, 2007.
  6. Xie et al., Efficient vector-based forwarding for underwater sensor networks, Hindawi Publishing Corporation, 2010.
  7. Xie et al., Aqua-Sim: an NS-2 based simulator for underwater sensor networks, in: Proceedings of the  OCEANS, 2009.
  8. Banaeizadeh, A. T. Haghighat, An energy-efficient data gathering scheme in underwater wireless sensor networks using a mobile sink, International Journal of Information Technology, 2020, vol 12, pp513–522.
  9. G. Proakis, J. A. Rice, E.  M.  Sozer, M.   Stojanovic, Shallow   water   acoustic  networks,  IEEE   Comm. Mag. 39 (11), pp. 114–119, 2001.
  10. Niculescu and B. Nath, Trajectory based forwarding and its applications, in: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MOBICOM’03), San Diego, Calif, USA, Sept. 2003.
  11. Pompili, T. Melodia, Three-dimenisional  routing  in underwater  acoustic  sensor  networks,  in:  Proceedings  of  the 2nd ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (WASUN’05), Montreal, Calif, USA, pp. 214–221, Oct. 2005.
  12. A. Albukhary, F. Bouabdallah, Time-variant balanced routing strategy for underwater wireless sensor networks, Wireless Networks, 2019, Vol 25, pp 3481–3495.
  13. Yu, N. Yao, J. Liu, An adaptive routing protocol in underwater sparse acoustic sensor networks, Ad Hoc Networks, 2014.
  14. M. Ibrahim et al., Enhancing the Vector-Based Forwarding Routing Protocol for Underwater Wireless Sensor Networks: A Clustering Approach, in: Proceedings of the Tenth International Conference on Wireless and Mobile Communications, pp. 98-104, 2014.
  15. R. Khosravi, H. Basri, H. Rostami, Improvement of Energy Consumption in Dense Underwater Sensor Networks, in: Poceedings of 2nd International Congress of Electrical Engg., Computer Science and Information Tech., Tehran, Iran, 2015.
  16. Cai, Z. Gao, D. Yang, N. Yao, A network coding based protocol for reliable data transfer in underwater acoustic sensor, Ad Hoc Networks 11 pp. 1603–1609, 2013.
  17. Feng, D. Qin, P. Ji, M. Zhao, R. Guo, T. M. Berhane, Improved energy-balanced algorithm for underwater wireless sensor network based on depth threshold and energy level partition, EURASIP Journal on Wireless Communications and Networking, 2019, vol 2, No 228.
  18. Pouryazdanpanah, M. Anjomshoa, A. Salehi, A. Afroozeh, M. Moshfegh, DS-VBF: Dual Sink Vector-Based Routing Protocol for Underwater Wireless Sensor Network, in: Proceedings of 5th Control and System Graduate Research Colloquium, Malaysia, 2014.
  19. R. Khosravi, H. Basri, H. Rostami,  Routing with using Vector-Based Forwarding in Underwater Wireless Sensor Networks, in: Proceedings of 2nd International Congress of  Electrical Engg., Computer Science and Information Tech., Tehran, Iran, 2015.
  20. K. Dhurandher, M. S. Obaidat, M. Gupta, An efficient technique for geocast region holes in underwater sensor, networks and its performance evaluation, Simulation Modelling Practice and Theory 19 ,pp. 2102–2116, 2011.
  21. K. Dhurandher, M. S. Obaidat, M. Gupta, Energized geocasting model for underwater wireless sensor networks, Simulation Modelling Practice and Theory 37, pp. 125–138, 2013.
  22. F. Akyildiz, D. Pompili, T. Melodia, State-of-the-Art in Protocol Research for Underwater, Acoustic Sensor Networks, ACM WUWNet’06, Los Angeles, California, USA, September 25, 2006.
  23. M. Jornet, M. Stojanovic, M. Zorzi, Focused beam routing protocol for underwater acoustic networks. Proceedings of the 3rd International Workshop on Underwater Networks, San-Francisco, USA, 2008.
  24. J. Johnson, R. J. Green, M. S. Leeson, Hybrid underwater optical/acoustic link design, , 16th IEEE International Conference on Transparent Optical Networks (ICTON), pp. 1 – 4, 2014.
  25. Ping et al., A reliable and efficient routing protocol for Underwater Acoustic Sensor Networks, IEEE, pp. 185 – 190, 2013.
  26. Chen et al., Mobicast Routing Protocol for Underwater Sensor Networks, IEEE Sensors Journal, pp. 737 – 749, 2013.
  27. Rahman, C. Benson, M. Frater, Routing protocols for underwater ad hoc networks, IEEE, 2012.
  28. Coutinho, L. Vieira , A. Loureiro, DCR: Depth-Controlled Routing protocol for underwater sensor networks, IEEE Symposium on Computers and Communications (ISCC), pp. 453 – 458, 2013.
  29. Emokpae, M. Younis, Signal reflection-enabled geographical routing for underwater sensor networks, IEEE International Conference on Communications (ICC), pp. 147 – 151, 2012.
  30. Sozer, M. Stojanovic, and J. Proakis, Underwater acoustic networks, IEEE J. Oceanic Eng., vol. 25, no. 1, pp. 72-83, 2000.
  31. Uichin, et al., Pressure routing for underwater sensor networks. In: Proceedings of the IEEE, INFOCOM, 2010.
  32. R. Khosravi, H. Rostami, R. Salari, A Solution for Scalable Routing in Depth Divisions-Based DUSNs via Adding a Scalabl Parameter to Control Depth Clusters: Creating an Energy Efficient and Low Delay NI-Independent Communication Protocol, Journal of Computer and Communications, vol. 4, no. 7, pp 55-61, 2016.
  33. Esfandiar, Improving VBF protocol by using a nature-inspired algorithm in underwater sensor networks (UWSNs), M.Sc. Thesis, Shiraz University, 2011.
  34. S. Tanenbaum, COMPUTER NETWORKS, 5th ed., Prentice Hall, 2011.
  35. Ali, L. T. Jung, I. Faye, Diagonal and Vertical Routing Protocol for Underwater Wireless Sensor Network, International Conference on Innovation, Management and Technology Research (ICIMTR'13), Malaysia, pp. 372-379, 2013.
  36. Karl, A. Willig, Protocols and architectures for wireless sensor networks, 1st edition, John Wiley & Sons, 2005.
  37. Han et al., Routing Protocols in Underwater Acoustic Sensor Networks: A Quantitative Comparison, International Journal of Distributed Sensor Networks, 2015.
  38. Wahid and D. Kim, An Energy Efficient Localization-Free Routing Protocol for Underwater Wireless Sensor Networks, International Journal of Distributed Sensor Networks, 2012.
  39. Su, X. Liu, F. Shang, Vector-based low-delay forwarding protocol for underwater wireless sensor networks, International Conference on Multimedia Information Networking and Security, 2010.
  40. Wei, Y. Luo, Z. Jin, J. Wei, Y. Su, ES-VBF: An Energy Saving Routing Protocol, International Conference on Information Technology and Software Engineering, Lecture Notes in Electrical Engineering, 2013.
  41. Hemavathy, Indumathi, Deep learning-based hybrid dynamic biased track (DL-HDBT) routing for under water acoustic sensor networks, Journal of Ambient Intelligence and Humanized Computing, No. 6, pp 134-142, 2020.