تحلیل تجربی خواص مکانیکی آلومینیم ۵۰۸۳ جوشکاری شده به روش MIG پس از فرآیند اصطکاکی اغتشاشی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی

3 دانشیار، دانشکده مهندسی مواد و علوم میان‌رشته‌ای، دانشگاه تربیت دبیر شهید رجائی

چکیده

در مقاله حاضر، تلاش شده است که به روش تجربی، خواص مکانیکی آلیاژ آلومینیم ۵۰۸۳ جوشکاری شده با گاز محافظ بی­اثر توسط فرآیند اصطکاکی اغتشاشی تحلیل شود. برای این منظور، فرآیند، در سه سرعت چرخش ۵۰۰ ،۷۵۰ و ۱۰۰۰ دور بر دقیقه و با سرعت پیشروی ۱۰۰ سانتی‌متر در دقیقه صورت گرفت. به منظور دستیابی به میزان تأثیر فرآیند اصطکاکی اغتشاشی بر ریزساختار آلیاژ مورد آزمایش، نمونه‌های جوشکاری شده و تحت فرآیند قرار گرفته، مورد مطالعه قرار گرفتند. همچنین، ریزسختی و استحکام کششی هر یک از نمونه‌ها مورد بررسی قرار گرفتند. سپس با استفاده از روش الگوریتم ژنتیک، مقدار بهینه سرعت چرخش محاسبه گردید. نتایج حاصل نشان داد که فرآیند اصطکاکی اغتشاشی، ساختار منطقه متأثر از حرارت را بطور قابل توجهی ریزتر می­کند و علاوه بر این، موجب کاهش مؤثر نقص‌هایی نظیر تخلخل و عدم ترشوندگی ناشی از منطقه ذوب جوش می­شود. از طرف دیگر، نتایج حاصل از بهینه‌سازی بیانگر آن است که مناسب‌ترین استحکام، در سرعت دورانی۸۲۰ دور در دقیقه به دست می‌آید. در این سرعت، اندازه دانه‌ها در مقایسه با منطقه متأثر از حرارت در حالت پایه، ۹۶٪ کاهش می‌یابد. تصاویر سطح مقطع شکست نمونه بهینه، بر خلاف نمونه‌های دیگر، نشانگر این است که شکست در قسمت پنجه جوش اتفاق نیفتاده است، که این را می‌توان به حذف حفره‌های موجود در پنجه جوش توسط فرآیند اصطکاکی اغتشاشی نسبت داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental analysis of mechanical properties of MIG welded 5083 aluminum alloy after friction stir process

نویسندگان [English]

  • Mohammad Reza Hadavi 1
  • Faramarz Ashenai Ghasemi 2
  • Hassan Jafari 3
1 Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University Lavizan
2 Associate Professor- Mechanical Engineering Faculty-, Shahid Rajaee Teacher Traini8ng University
3 Faculty of Materials Engineering & New Technologies, Shahid Rajaee Teacher Training University
چکیده [English]

In the present paper, an attempt has been made to improve the mechanical properties of 5083 aluminum alloy welded by metal inert gas method followed by frictional stir process using an experimental method. For this purpose, the FSP process was performed in three rotation velocities of 500, 750, and 1000 rpm and with a forward velocity of 100 cm/min. In order to achieve the effect of FSP process on the microstructure of the tested alloy, welding samples, as well as frictional stir process samples, were studied. Thus, the microhardness and tensile strength of each sample were investigated. Then, using the genetic algorithm method, the optimal value of the rotation velocity was calculated. The results showed that the FSP process makes the heat affected area finer in terms of granulation and in addition, defects such as porosity and non-wettability due to the molten weld area are reduced or eliminated by the frictional stir process. On the other hand, the results of optimization indicate that the most suitable strength is obtained at a rotational velocity of 820 rpm. At this speed, the grain size is reduced by 96% compared to the heat affected area in the initial base state. Also, the cross-sectional images of the optimal sample fracture, unlike other samples, show that the fracture did not occur in the weld area, which can be attributed to the removal of cavities in the welded area by the frictional stir process.

کلیدواژه‌ها [English]

  • Aluminum alloy
  • Friction stir process
  • Microstructure
  • Mechanical properties
  • genetic algorithm
[1]    E.Delmotte, N. Micone and De Waele. ''Testing methodologies for corrosion fatigue'', 2015.
[2]    Han Y, Xue S, Fu R, Zhang P. ''Effect of hydrogen content in ER5183 welding wire on the tensile strength and fracture morphology of Al–Mg MIG weld'', Vacuum, 2019.
[3]    Wang BB, Xue P, Xiao BL, Wang WG, Liu YD, Ma ZY. ''Achieving equal fatigue strength to base material in a friction stir welded 5083-H19 aluminium alloy joint. Science and Technology of Welding and Joining'', 2020.
[4]    Khan NU, Rajput S, Gupta V, Verma V, Soota T. ''To study mechanical properties and microstructures of MIG welded high strength low alloy steel'', Materials Today: Proceedings , 2019.
[5]    Moreira P, De Figueiredo M, De Castro P. '' Fatigue behaviour of FSW and MIG weldments for two aluminium alloys'', Theoretical and applied fracture mechanics, 2007.
[6]    Qin G, Ao Z, Chen Y, Zhang C, Geng P. '' Formability behavior of Al/steel MIG arc brazed-fusion welded joint. Journal of Materials Processing Technology'', 2019.
[7]    Sherafatnia K, Farrahi GH, Mahmoudi AH. '' Effect of initial surface treatment on shot peening residual stress field: Analytical approach with experimental verification'', International Journal of Mechanical Sciences, 2018.
[8]    Wei K, Lv M, Zeng X, Xiao Z, Huang G, Liu M, Deng J. '' Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5 Sn alloy'', Materials Characterization, 2019.
[9]    Hönnige JR, Colegrove P, Williams S. '' Improvement of microstructure and mechanical properties in Wire + Arc Additively Manufactured Ti-6Al-4V with Machine Hammer Peening'', Procedia Engineering, 2017.
[10] Kumar N, Mishra RS, Huskamp CS, Sankaran KK. ''The effect of friction stir processing on the microstructure and mechanical properties of equal channel angular pressed 5052Al alloy sheet'', Journal of Materials Science, 2011.
[11] Sharma SR, Ma ZY, Mishra RS. ''Effect of friction stir processing on fatigue behavior of A356 alloy'', Scripta Materialia. 2004.
[12] Wang T, Komarasamy M, Shukla S, Mishra RS. ''Simultaneous enhancement of strength and ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy via friction stir processing'', Journal of Alloys and Compounds, 2018.
[13] Bharti S, Dutta V, Sharma S, Kumar R. ''A study on the effect of Friction Stir Processing on the hardness of Aluminum 6000 series'', Materials Today: Proceedings, 2019.
[14] Barati M, Abbasi M, Abedini M. ''The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite'', Journal of Manufacturing Processes, 2019.
[15] Wang Y, Li R, Yuan T. ''Microstructure and mechanical properties of Al-Si-Ni coating on Cu-Cr substrate prepared by multi-permeation and friction stir processing'', Nano Materials Science, 2019.
[16] El-Danaf EA, El-Rayes MM, Soliman MS. ''Friction stir processing: An effective technique to refine grain structure and enhance ductility'', Materials & Design, 2010.
[17] Nascimento, F., et al. ''Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys", Materials Science and Engineering, 2009.
[18] El-Danaf A, El-Rayes M, Soliman S. ''Friction stir processing: an effective technique to refine grain structure and enhance ductility", 2010.
[19] De Jesus JS, Loureiro A, Costa JM, Ferreira JM. ''Effect of tool geometry on friction stir processing and fatigue strength of MIG T welds on Al alloys'', Journal of Materials Processing Technology. 2014.
[20] Borrego LP, Costa JD, Jesus JS, Loureiro AR, Ferreira JM. ''Fatigue life improvement by friction stir processing of 5083 Aluminum alloy MIG butt welds'', Theoretical and Applied Fracture Mechanics. 2014.
[21] Deb, K, Pratep, A, Agarwel, S & Meyarivan, T. ''A fast and elitist multiobjective genetic algorithm: NSGA-II'', IEEE transactions on evolutionary computation. 2002.
[22] G. S. Ponticelli, S. Guarino, O. Giannini, F. Tagliaferri, S. Venettacci, and F. Trovalusci. ''Aluminium foam production control by using a combined fuzzy-genetic algorithm model," Procedia CIRP. vol. 88, pp. 503-508. 2020.
[23] L. Kanumuri, D. Pushpalatha, A. S. Naidu, and S. K. Singh. ''A hybrid neural network-genetic algorithm for prediction of mechanical properties of ASS-304 at elevated temperatures'', Materials Today.  vol. 4, no. 2, pp. 746-751. 2017.
[24] C. C. Nwobi-Okoye, B. Q. Ochieze, and S. Okiy. ''Multi-objective optimization and modeling of age hardening process using ANN, ANFIS and genetic algorithm: Results from aluminum alloy A356/cow horn particulate composite'', Journal of Materials Research and Technology. vol. 8, no. 3, pp. 3054-3075, 2019.
[25] ASTM B221. ''Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes'', 2014.
[26] An American National Standard. ''Specification for Bare Aluminum and Aluminum-Alloy Welding Electrodes and Rods '', 2002.
[27] ASTM E3.''Standard Guide for Preparation of Metallographic Specimens'',2011.
[28] ASTM E8. '' Standard Test methods for Tention Testing of Metallic Materials''.  
[29] ASTM E384. ''Standard Test Method for Microindentation Hardness of Materials'',  2017.
[30] Del Valle JA, Rey P, Gesto D, Verdera D, Jimenez JA, Ruano OA. ''Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing'', Materials Science and Engineering. 2015.
[31] Bauri R, Yadav D. " Metal Matrix Composites by Friction Stir Processing: Butterworth-Heinemann'', Chapter 2 - Introduction to Friction Stir Processing (FSP). 2018.