دسته‌بندی داده‌های سوناری با استفاده از شبکه عصبی ادراکی چند لایه آموزش دیده شده با الگوریتم بهینه‌سازی تعدیل شده مبتنی بر جغرافیای زیستی

نوع مقاله: پژوهشی

نویسندگان

1 استاد دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

2 دانشجوی کارشناسی ارشد دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)

3 دانشجوی دکتری دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

چکیده

با توجه به پیچیدگی فیزیکی اهداف سوناری و شباهت بسیار زیاد کلاتر با اهداف واقعی در سونار فعال، دسته‌بندی آن‌ها یکی از مسایل چالش‌برانگیز برای پژوهشگران و صنعت‌گران این حوزه است. شبکه‌های عصبی چند‌لایه، یکی از پرکاربردترین ابزار در دسته‌بندی اهداف واقعی می‌باشند. می‌توان از آموزش به عنوان مهم‌ترین بخش این شبکه‌ها اشاره نمود. در سال‌های اخیر استفاده از الگوریتم‌های تکاملی برای آموزش این نوع شبکه‌ها بسیار مرسوم گشته است. هدف این مقاله، استفاده از الگوریتم بهینه شده مبتنی بر جغرافیای زیستی با نرخ مهاجرت تعدیل شده، برای آموزش شبکه‌های عصبی چند‌لایه به منظور دسته‌بندی اهداف سوناری می‌باشد. قدرت اکتشاف و بهره‌برداری نسبی کم، از جمله ضعف‌‌های الگوریتم استاندارد بهینه‌سازی مبتنی بر جغرافیای زیستی است. مهاجرت، جهش و نخبه‌گرایی، سه عملگر اصلی این الگوریتم می‌باشند. عملگر مهاجرت مهم‌ترین نقش را (به اشتراک گذاشتن اطلاعت) در این الگوریتم ایفا می‌کند. این مقاله نوع جدیدی از عملگر مهاجرت را برای الگوریتم بهینه‌سازی مبتنی بر جغرافیای زیستی ارائه می‌دهد، به‌طوری که هر زیستگاه اطلاعات را با روشی متفاوت و به صورت تعدیل شده، از دیگر زیستگاه‌ها می‌پذیرد. شبیه‌سازی و مقایسه نتایج نشان می‌دهند که روش پیشنهادی در این مقاله، دارای دقت دسته‌بندی بالاتر و سرعت همگرایی بیشتر نسبت به دیگر الگوریتم‌های تکاملی از جمله الگوریتم استاندارد بهینه‌سازی مبتنی بر جغرافیای زیستی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sonar Data Set Classification Using MLP Neural Network Trained By Modified Biogeography-Based Optimization

نویسندگان [English]

  • S.M Mousavi 1
  • M Kaveh 2
  • M Khishe 3
چکیده [English]

Clutter is physically very similar to the real sonar targets in active sonar. So classification and detection of the real targets from the clutter is a complex and challenging problem for the researchers. One of the most applicable instruments to classify sonar datasets is Multi-layer Perceptron Neural Network (MLP NN). Learning is a vital part of all NNs. The use of heuristic and meta-heuristic algorithms is recently becoming very popular. This paper proposes a new migration operator in Biogeography-based Optimization (BBO) for training an MLP NN. Poor balance of exploration and exploitation is the weakness of original version of BBO. Migration, mutation and elitism are three operators in BBO. Migration operator is responsible for the information sharing among candidate solutions (islands). In this way, the migration operator plays an important role for the design of an efficient BBO. This paper proposes a new migration operator in BBO. The obtained BBO shows better diversified search process and hence finds solutions more accurately with high convergence rate. The simulation results indicate that new porposed migration model (modified BBO) has faster convergence speed and greater classification rate than other meta-heuristic algorithms.

کلیدواژه‌ها [English]

  • Bbo
  • Sonar Data Set Classification
  • Clutter
  • MLP NN
  • Modified Migration

[1] Mosavi, M. R. Khishe, M. and Ebrahimi, E. “Classification of Sonar Targets using OMKC, Genetic Algorithms and Statistical Moments”, Journal of Advances in Computer Research, Vol. 7, No .1, pp. 50-59, 2015.

[2] Mosavi, M. R. Khishe, M. Aghababaei, M. and Mohammadzadeh, F. “Approximation of Active Sonar Clutter's Statistical Parameters using Array's Effective Beam-width”, Iranian Journal of Marine Science and Technology, Vol. 73, No. 1, pp. 11-22, 2015.

[3] Mirjalili, S. Mirjalili, S. M. and Lewis, A. “Let a Biogeography-based Optimizer Train Your Multi-Layer Perceptron”, Journal of Information Sciences, Vol. 269, pp. 188-209, 2014.

[4] Auer, P. Burgsteiner, H. and Maass, W. “A Learning Rule for Very Simple Universal Approximators Consisting of a Single Layer of Perceptrons”, Neural Networks, Vol. 21, No. 5, pp. 786-795, 2008.

[5] Nguyen, L. S. Frauendorfer, D. Mast, M. S. and Gatica-Perez, D. “Hire Me: Computational Inference of Hirability in Employment Interviews based on Nonverbal Behavior”, IEEE Transactions on Multimedia, Vol. 16, No. 4, pp. 1018-1031, 2014.

 [6] Reed, R. D. and Marks, R. J. “Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks”, MIT Press, 1998.

[7] Oja, E. “Unsupervised Learning in Neural Computation”, Theoretical Computer Science, Vol. 287, pp. 187-207, 2002.

[8] Zhang, N. “An Online Gradient Method with Momentum for Two-Layer Feedforward Neural Networks”, Applied Mathematics and Computation, Vol. 212, pp. 488-498, 2009.

[9] Hush, D. R. and Horne, B. G. “Progress in Supervised Neural Networks”, IEEE Signal Processing Magazine, Vol. 10, pp. 8-39, 1993. [10] Ng, S. C. Cheung, C. C. Leung, S. H. and Luk, A. “Fast Convergence for Backpropagation Network with Magnified Gradient Function”, IEEE Joint Conference on Neural Networks, Vol. 3, pp. 1903-1908, 2003.

[11] Magoulas, G. Vrahatis, M. and Androulakis, G. “On the Alleviation of the Problem of Local Minima in Back-propagation”, Nonlinear Analysis, Theory, Methods & Applications, Vol. 30, No. 7, pp. 4545-4550, 1997.

[12] Wang, P. Yu, X. and Lu, J. “Identification and Evolution of Structurally Dominant Nodes in Protein-Protein Interaction Networks”, IEEE Transactions on Biomedical Circuits and Systems, Vol. 8, No. 1, pp. 87-97, 2014.

[13] Gudise, V. G. and Venayagamoorthy, G. K. “Comparison of Particle Swarm Optimization and Back propagation as Training Algorithms for Neural Networks”, IEEE Swarm Intelligence Symposium, pp. 110-117, 2003.

[14] Mendes, R. Cortez, P. Rocha, M. and Neves, J. “Particle Swarms for Feedforward Neural Network Training”, IEEE Joint Conference on Neural Networks, pp. 1895-1899, 2002.

[15] Seiffert, U. “Multiple Layer Perceptron Training using Genetic Algorithms”, European Symposium on Artificial Neural Networks, pp. 159-164, 2001.

[16] Blum, C. and Socha, K. “Training Feed-forward Neural Networks with Ant Colony Optimization: An Application to Pattern Classification”, Hybrid Intelligent Systems Conference, pp. 6-14, 2005.

[17] Li, G. Na, J. Stoten, D. and Ren, X. “Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems”, IEEE Transactions on Control Systems Technology, Vol. 22, No. 3, pp. 944-954, 2014.

[18] Simon, D. “Biogeography Based Optimization”, IEEE Transaction on Evoluationary Computation, Vol. 12, No. 6, pp. 702–713, 2008.

[19] Li, X. and Yin, M. “Multi-Operator based Biogeography-based Optimization with Mutation for Global Numerical Optimization”, Journal of Information Sciences, Vol. 64, No. 10, pp. 2833–2844, 2013.

[20] Ma, H. and Simon, D. “Analysis of Migration Models of Biogeography-based Optimization using Markov Theory”, Engineering Applications of Artificial Intelligence, Vol. 24, pp. 1052-1060, 2011.

[21] Farswan, P. Chand, J. and Deep, K. “A Modified Biogeography Based Optimization”, Advances in Intelligent Systems and Computing, Springer, Vol. 22, No. 10, pp. 662–674, 2016.

[22] Naseri, M. J. “Floating Buoy Controller Design and Implementation by using Special Sonobuoys”, M. S. Thesis, Marine Sciences University of Nowshahr Imam Khomeini, 2015.