تنظیم ضرایب کنترل‌کننده PID و کنترل‌کننده بنگ‌بنگ با استفاده از الگوریتم ژنتیک در ماهواره‌ فرضی ارتباطی نیروی دریایی

نوع مقاله: کوتاه

نویسندگان

1 استاد دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

2 دانشجوی کارشناسی ارشد دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)

چکیده

با توجه به نقش به‌سزای ماهواره‌ها در ارتباطات دریایی به‌ویژه در سامانه موقعیت‌یاب جهانی، مهم‌ترین مساله‌ای که درساخت و پرتاب یک ماهواره به فضا وجود دارد، هزینه بسیار زیاد این کار می باشد. به همین دلیل برای هر شرکت سازنده و فرستنده، مدت زمان حیات ماهواره بسیار مهم است. عمر یک ماهواره تا حدود زیادی به کیفیت ساخت آن بستگی دارد، اما مهم‌ترین عاملی که این موضوع را محدود می‌کند، مقدار سوخت حمل شده می‌باشد. بنابراین باید راه‌کاری صحیح برای کنترل بر مصرف سوخت و صرفه‌جویی در آن در نظر گرفته شود. کنترل‌کننده بنگ‌بنگ با تبدیل سیگنال پیوسته کنترلی به صورت قطار پالس یا به عبارتی به صورت سیگنال روشن-خاموش این مهم را ممکن می‌سازد. هر چه کنترل‌کننده مدت زمان بیشتری خاموش باشد، در مصرف سوخت صرفه‌جویی بیشتری خواهد شد. سیستم مورد مطالعه در این مقاله، از سیستم اولین ماهواره‌ی دانشجویی که در سال 2009 به فضا پرتاب شده است، الگوبرداری می‌کند که علاوه بر کنترل‌کننده بنگ‌بنگ از کنترل‌کننده PID نیز بهره می‌گیرد. برای استفاده از ویژگی‌های کنترل‌کننده PID باید ضرایب تناسبی، مشتق‌گیر و انتگرالی به‌درستی و با دقت زیاد تنظیم شوند. هدف این مقاله استفاده از الگوریتم ژنتیک برای تنظیم ضرایب کنترل‌کننده‌های مورد استفاده در این ماهواره می‌باشد. نتایج شبیه‌سازی‌های انجام شده مبین بهبود مناسب عملکرد کنترل‌کننده‌های مذکور توسط الگوریتم ژنتیک است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Tuning the PID and Bang-bang Controllers using Genetic Algorithm in Navy Satellite Communication

نویسندگان [English]

  • S.M Mousavi 1
  • M Kaveh 2
  • V Yaghoubi 2
چکیده [English]

Given the important role of satellites in maritime communications, especially in the Global Positioning System (GPS), very high cost of the build and launch a satellite into space is the most important problem. Therefore, for each country or company, the lifetime of satellites is very important. The life of a satellite largely depends on the quality of its construction, but the most important factor that limits is the fuel which is transported. So, it should be considered to the right solution to control fuel consumption and saves it. Bang-bang controller by converting continuous control signal to a pulse train, can provide the ability to save the fuel. If the controller be more time off, the fuel savings will be more. The system is studied in this paper is modeled on European Satellite Moon Orbiter (ESMO) that not only uses the Proportional Integral Derivative (PID) controller for tracking the input pitch angle, but also uses bang-bang controller for reduce the activity of the thruster. The course of this paper is to using Genetic Algorithm (GA) for regulating parameters of mentioned controllers in this satellite. The simulation results indicate that GA has a good performance to optimization of the PID and bang-bang controllers.

کلیدواژه‌ها [English]

  • PID Controller
  • Bang-bang Controller
  • genetic algorithm
  • Navy Satellite Communication

[1] Q. Hu and G. Ma, “Flexible Spacecraft Vibration Suppression using PWPF Modulated Input Component Command and Sliding Mode Control”, Asian Journal of Control, Vol. 9, No. 1, pp. 20-29, 2007.

[2] B. D. Forest, “An Analysis of Military Use of Commercial Satellite Communications”, Master Thesis, Naval Postgraduate School, Monterey California, 2008.

[3] R. M. Camarena and A. L. Carcich, “Application of the Terrestar Satellite Constellation to the Global Initiative for Tracking Special and Nonproliferation Material” Master Thesis, Naval Postgraduate School, Monterey California, 2011.

[4] H. H. Benzon, P. Hoeg and T. Durgonics, “Analysis of Satellite-based Navigation Signal Reflectometry: Simulations and Observations”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.6, No.99. pp. 1-6, 2016.

[5] O. A. Babushkina and A. A. Golovkov, “Miniaturized Diplexers and Filters for GLONASS and GPS Satellite Navigation”,  21th International Crimean Conference on Microwave and Telecommunication Technology, pp. 610-611, 2011.

[6] T. D. Krovel, “Optimal Tuning of PWPF Modulator for Attitude Control”, Master Thesis, Department of Engineering Cybernetics University of Science and Technology, Norway, 2005.

[7] A. Rubbai and J. Jerri, “Hybrid Fuzzy Bang-Bang Mode Controller with Switching Function for Electric Motor Drive Applications”, IEEE Transactions on Industry Applications, Vol. 50, No. 3, pp. 2269-2276, 2014.

[8] Z. Shihong and M. Tao, “The Application of Variable Structure Bang-Bang Controller on Floating Satellite Simulation System”, International Conference on Mechatronics and Automation, pp. 3605-3609, 2007.

[9] D. Engels, “The Describing Functions for a Constrained-Range Integration Process with Bang-Bang Input and Dead Zone”, IEEE Transactions on Automatic Control, Vol. 12, No. 5, pp. 582-585, 1967.

[10] M. H. Rashid, “Power Electronics Handbook”, Electrical and Computer Engineering, University of West Florida, 2001.

[11] B. S. Kumar and A. Ng, “A Bang-bang Control Approach to Maneuver Spacecraft in a Formation with Differential Drag”, International Conference on Navigation and Control, pp. 123-134, 2008.

[12] H. R. Mashhadi and H. M. Shanechi, “A New Genetic Algorithm with Lamarckian Individual Learning for Generation Scheduling”, IEEE Transactions on Power Systems, Vol. 18, No. 3, pp. 1181-1186, 2003.

[13] L. Zhang and H. Li, “An Improved Genetic Algorithm for Task Scheduling of Electro-Magnetic Detection Satellite With Uncertain Detecting Duration”, IEEE International Conference on Systems, Man and Cybernetics, pp. 5128-5133, 2009.

[14] J. Li and H. Chen, “Method for Electromagnetic Detection Satellites Scheduling Based on Genetic Algorithm with Alterable Penalty Coefficient”, Journal of Systems Engineering and Electronics, Vol. 25, No. 5, pp. 822-832, 2014.

[15] L. Hong-Yan, “The Adaptive Niche Genetic Algorithm for Optimum Design of PID Controller”, International Conference on Machine Learning and Cybernetics, pp. 487-491, 2007.

[16] E. H. Gurban and G. D. Andreescu,  “Comparison of Modified Smith Predictor and PID Controller Tuned by Genetic Algorithms for Greenhouse Climate Control”, IEEE Symposium on Applied Computational Intelligence and Informatics, pp. 79-83, 2014.

[17] Y. Ren and Z. Chengyao, “Optimal PID Controller Design in PMSM Based on Improved Genetic Algorithm”, 2nd International Conference on Industrial Mechatronics and Automation, pp. 123-126, 2010.

[18] S. Kumar and R. Bhatt, “Multi Objective Ant Algorithm to Parameter Optimized Of PID Controller and Compare to Genetic Algorithm”, IEEE Conference on Computational Intelligence and Computing Research, pp. 1-4, 2013.

[19] P. Wang and D. P. Kwok, “Optimal Design of PID Process Controllers based on Genetic Algorithms”, Control Engineering Practice, Vol. 2, No. 4, pp. 641-648, 1994.