کنترل و همزمان سازی رفتار آشوبی ژیروسکوب با دو درجه آزادی به روش کنترل مد لغزشی

نوع مقاله: کوتاه

نویسندگان

دانشکده فنی و مهندسی، دانشگاه مازندران

چکیده

در طراحی زیردریایی ها و هواپیماها، حفظ تعادل با استفاده از ابزاری به نام ژیروسکوپ یا دوران نما امکان پذیر می شود. ژیروسکوپ ها انواع مختلفی دارند که یکی از انواع آنها ژیروسکوپ با دو درجه آزادی است. کنترل و همزمان سازی ژیروسکوپ با دو درجه آزادی، در این تحقیق مورد بررسی قرار گرفته است. نشان داده می شود که ژیروسکوپ با دو درجه آزادی، سیستمی غیرخطی بوده و حالت های آن خروجی های آشوبی تولید خواهند کرد. لذا در این مطالعه روش کنترل مد لغزشی برای کنترل و همزمان سازی سیستم مذکور ارائه شده است که حاصل کار تعقیب مناسب خروجی آشوبی ژیروسکوپ می باشد. نتایج شبیه سازی نشان می دهد که روش کنترل مد لغزشی، روشی کارا برای کنترل رفتار آشوبی سیستم مذکور می باشد.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Control and Synchronization of Gyroscopes with two degrees of freedom Using Sliding Mode Control

نویسندگان [English]

  • J Ghasemi
  • V Nazerian
  • Kh Aghajani
چکیده [English]

Gyros for recognizing angular motion are used in vessel’s gyrocompasses, submarine inertial, airplane automatic pilots and space-vehicle attitude systems. The dynamics of gyro is a very exciting nonlinear problem in classical mechanics and control engineering. In this study, control and synchronization of two gyroscope systems with two degrees of freedom is studied. It is shown that the mentioned gyroscope system has nonlinear and chaotic dynamics. For tackle the problems of nonlinearities and chaotic behavior, in this research sliding mode control (SMC) is proposed for control and synchronization purpose. The simulation results confirm that sliding mode based controller provides good synchronization without chattering phenomena.    

کلیدواژه‌ها [English]

  • Gyro
  • Nonlinear system
  • chaotic behavior
  • sliding mode control

[1]            Yau, H. T., “Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs” Vol. 9, pp. 2253-2261, 2008.

[2]            Ge, Z. M., Lee, J. K., “Bifurcation and chaos in a rate gyro harmonic excitation”, J. Sound Vib. Vol. 194, pp. 107-117, 2005.

[3]            Chen, H. K., Ge, Z. M., “Bifurcation and chaos of two-degree-of-freedom dissipative gyroscope”, Chaos Solitons Fractals, Vol. 24, pp. 125-136, 2005

[4]            Pecora, L. M., Carroll, T. L., "Synchronization in chaotic systems," Phys Rev Lett, vol. 64, pp. 821-824, Feb 19 1990.

[5]            Pecora, L. M., Carroll, T. L., Johnson, G. A., Mar, D. J., Heagy, J. F., "Fundamentals of synchronization in chaotic systems, concepts, and applications," Chaos, vol. 7, pp. 520-543, 1997.

[6]            Lü, J. and Lu, J., "Controlling uncertain Lü system using linear feedback," Chaos, Solitons & Fractals, vol. 17, pp. 127-133, 2003.

[7]            Park, J. H. and Kwon, O. M., "A novel criterion for delayed feedback control of time-delay chaotic systems," Chaos, Solitons & Fractals, vol. 23, pp. 495-501, 2005.

[8]            Xiao-Qun, W., Jun-An, L., "Parameter identification and backstepping control of uncertain Lü system," Chaos, Solitons & Fractals, vol. 18, pp. 721-729, 2003.

[9]            Roy, R., Murphy,T. W., Maier T. D., Gills, Z., Hunt, E. R., "Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system," Physical Review Letters, vol. 68, pp. 1259-1262, 1992.

[10]        Yang, T., "A survey of cheatic secure communication systems," International Journal of Computational Cognition vol. 2, pp. 81–130, 2004.

[11]        Xiao, M.,  Cao, J. "Delayed feedback-based bifurcation control in an Internet congestion model," Journal of Mathematical Analysis and Applications, vol. 332, pp. 1010-1027, 2007.

[12]        Chen, H.-K., Ge, Z.-M., "Bifurcations and chaos of a two-degree-of-freedom dissipative gyroscope," Chaos, Solitons & Fractals, vol. 24, pp. 125-136, 2005.

[13]        Ge, Z. M., Chen, H. K., Chen, H. H., "The regular and cheatic motions of a symmetric heavy gyroscope with harmonic excitation," Journal of Sound and Vibration, vol. 198, pp. 131-147, 1996.

[14]        Ge, Z. M. and Lee, J. K., "Chaos synchronization and parameter identification for gyroscope system," Applied Mathematics and Computation, vol. 163, pp. 667-682, 2005.

[15]        Khalilzadeh, A. R., Ziabari, M. T., "Control of chaos in nonlinear gyros via optimal backstepping method," presented at the Proceedings of the European conference of chemical engineering, and European conference of civil engineering, and European conference of mechanical engineering, and European conference on Control, Tenerife, Spain, 2010.

[16]        Slotine, J. J., Sastry, S. S., "Tracking control of non-linear systems using sliding surfaces with application to robot manipulators," in American Control Conference, 1983, 1983, pp. 132-135.