Comparison of Ducted and Non-Ducted Ship Propellers with Constraints Consideration Using Genetic Algorithm


In recent years, in spite of progressing in the ship propulsion system, many problems are required to work in order to gain highest performance. Optimization of propeller system, as the most important and applicable in this type of systems is of special importance. In many vessels, due to their certain conditions design, ducted propeller is used. Genetic algorithm is a powerful method for finding all parameters in a design with multiple objectives. Therefore, considering various aspects of design, we can use this algorithm for designing propellers. In this paper, GA method is applied for two purpose; hydrodynamic efficiency and vibration consideration, for optimized design of ducted propellers by applying Ka-series with nozzle NO.19A. The results from the ducted propeller design are also compared with the results obtained from the B-series propeller design.


عنوان مقاله [English]

مقایسه پروانه نازلدار و بدون نازل در کشتی ها با در نظر گرفتن قیدها به‌روش الگوریتم ژنتیک

چکیده [English]

در سالهای اخیر، با وجود توسعه سیستمهای رانش کشتی ها، مسائل زیادی در این سیستم های رانش بمنظور بهبود عملکرد و کارآیی انجام شده است. در بسیاری از کشتی ها جهت افزایش تراست، استفاده از پروانه نازلدار ترجیح داده می شود. مسئله بهینه سازی در سیستم پروانه کشتیها خیلی حائز اهمیت است. روش الگوریتم ژنتیک یکی از روشهای قدرتمند در طراحی پروانه است که برای سیستم های که تعداد پارامترها زیاد و توابع هدف چند بعدی باشند مورد تاکید می باشد. در این مقاله، روش الگوریتم ژنتیک جهت مقایسه و بهینه سازی پروانه نازلدار و بدون نازل جهت افزایش راندمان و کاهش ارتعاش استفاده شده است. نتایج و محاسبات این دو نوع پروانه طراحی شده نسبت به هم مقایسه شده اند.

کلیدواژه‌ها [English]

  • الگوریتم ژنتیک- پروانه نازلدار بهینه- راندمان- ارتعاش
[1]        GoldbergDE(1989). Genetic algorithms. Addison Wesley Longman,Boston, pp 2–8.

[2]         Benini E (2003.( Multiobjective design optimization of B-screw series propellers sing evolutionary algorithms. Mar Technol 40:229–238.

[3]         KUIPER, G (1992). The Wageningen Propeller Series, Marine Research Institute.

[4]         Suen J-B, Kouh J-S (1999). Genetic algorithms for optimal series propeller design. In: Proceedings of the third international conference on marine technology.ORDA 99.Szczecin,Poland,.

[5]         Karim MM, Ikehata M A(2000). Genetic algorithm (GA) based optimization technique for the design of marine propellers. In: Proceedings of the propeller/shafting symposium ,2000.

[6]         Jeng-Horng Chen Yu-Shan (2007). ShihBasic design of a series propeller with vibration consideration by genetic algorithm. J Mar  Sci  Technol  12:119–129,2007.

[7]         Peter Dueholm Justesen (2009). Multi-objective Optimization using Evolutionary algorithms. Department of Computer ScienceUniversity of AarhusDenmark

[8]         Jones, D.F., Mirrazavi, S.K., and Tamiz, M (2002). Multiobjective meta-heuristics: an overview of the current state-of-the-art,  European Journal of Operational Research 137(1) 1-9.

[9]         Schaffer, J.D (1985).Multiple Objective optimization with vector evaluated genetic algorithms. in International Conference on Genetic Algorithm and their applications.

[10]     Fonseca, C.M. and Fleming, P.J (1993). Multiobjective genetic algorithms. in IEE Colloquium on `Genetic Algorithms for Control Systems Engineering' (Digest No. 1993/130),28 May 1993.London,UK: IEE.

[11]     Horn, J., Nafpliotis, N., and Goldberg, D.E (1994). A niched Pareto genetic algorithm for multiobjective optimization. in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, 27-29 June 1994.Orlando,FL,USA: IEEE.

[12]     Murata, T. and Ishibuchi, H (1995). MOGA: multi-objective genetic algorithms. in Proceedings of 1995 IEEE International Conference on Evolutionary Computation, 29 Nov.-1 Dec. 1995.Perth,WA,Australia: IEEE.

[13]     Srinivas, N. and Deb, K (1994). Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms, Journal of Evolutionary Computation 2(3) 221-248.

[14]     Zitzler, E. and Thiele, L (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation 3(4) 257-271.

[15]     Knowles, J.D. and Corne, D.W. Approximating the nondominated front using the Pareto

[16]     archived evolution strategy. Evolutionary Computation 8(2) 149-172.

[17]     Deb, K., Pratap,A., Agarwal,S., and Meyarivan,T (2002).  A fast and elitist multiobjective genetic algorithm. NSGA-II, IEEE Transactions on Evolutionary Computation 6(2)182-197.

[18]     Sarker, R., Liang, K.-H (2002). andNewton, C., A new multiobjective evolutionary algorithm, European Journal of Operational Research 140(1) 12-23.

[19]     Lu, H. and Yen, G.G (2003). Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Transactions on Evolutionary Computation 7(4) 325-343.

[20]     Abdullah Konak,_, David W. Coit, Alice E. Smith(2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91 (2006) 992–1007.

[21]     Herbert Schneekluth, Volker Bertram (1998). Ship design for efficiency and economy. Butterworth-Heinemann,.

[22]     Oosterveld, M.W.C(1970).Wake Adapted Ducted Propellers. NSMB Wageningen Publication No. 345.June.

[23]     Oosterveld, M.W.C(1973). Ducted propeller characteristics. RINA Symp. on Ducted Propellers,London.

[24]    CARLTON, J. S. (1994). Marine Propellers and Propulsion. Butterworth- Heinemann,Oxford,UK.

[25]     Sasajima, T(1978). Usefulness of quasi-steady approach for estimation of propeller bearing forces. Propellers’78 Symp. Trans. SNAME.

[26]     Keller J (1966). Enige Aspecten Bij Het Antwerpen Van Scheepsschroeven.  Schpen Werf 24.

[27]     Oosterveld MWC, van Oossanen PV (1973). Representation of propeller characteristics suitable for preliminary ship design studies. In: Proceedings of the international conference on computer applications in shipbuilding .Tokyo, Japan.

[28]     Lammeren WPA, van Manen JD, Oosterveld MWC (1969). The Wageningen B-screw series. SNAME Trans 77:269–317.

[29]     Oosterveld MWC, van Oossanen PV (1975). Further computer-analyzed data of the Wageningen B-series. Int Shipbuild Prog 22:251–262.

[30]    GreeleyDS, Kerwin JE (1982). Numerical methods for propeller design and analysis in steady flow.  SNAME Trans 90:415–453.

[31]     Lammeren WPA, Manen JD, Oosterveld MMC(1969).The Wageningen B-screw series. SNAME Trans 77:269–317.

[32]     Schwanecke, H (1963). Gedanken wur Frage de Hydrodynamischen  Erregungen des Propellers und der Wellenleitung. STG, 57.

[33]     Long CL  Propellers (1992). shafting, and shafting system vibration analysis. In: Harrington RL, Marine engineering. NAME,New Jersey.

[34]     Parsons MG (1983). Mode coupling in torsional and longitudinal shafting vibration. Mar Technol 20:257–271.

[35]     Tsakonas S, Breslin J, Miller M (1967). Correlation and application of an unsteady flow theory for propeller forces. SNAME Trans 75:158–193.