دسته‌بندی اهداف سوناری با استفاده از روش OMKC

نویسندگان

1 دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

2 دانشگاه علم و صنعت ایران

چکیده

با توجه به خصوصیات فیزیکی پیچیده‌ی اهداف سوناری، طبقه‌بندی و تمیز دادن اهداف واقعی از اهداف کاذب یکی از زمینه‌های دشوار و پیچیده برای محققان و صنعتگران این حوزه است. با توجه به این ویژگی‌های اهداف سوناری، روش‌های هوشمند در دسته‌بندی این نوع دادگان دارای توانایی‌های منحصر به فردی می‌باشند. از این‌رو در سال‌های اخیر استفاده از شبکه‌های عصبی و ماشین بردار پشتیبانی در این زمینه کاربرد فراوانی داشته است. با توجه به اینکه دادگان سوناری دارای ابعاد بالایی در فضای ورودی می‌باشند، نمی‌توان آن‌ها را به‌صورت خطی از یکدیگر تفکیک نمود. بدین منظور، این مقاله برای طبقه‌بندی اهداف سوناری از روشی به نام OMKC استفاده می‌نماید. نتایج حاصله نشان می‌دهد که این روش دقت دسته‌بندی معادل با 763/98% را ارائه می‌کند که نسبت به روش‌های کلاسیک با حداکثر دقت 05/97، بهتر می‌باشد، ولی زمان اجرای الگوریتم 1014/0 ثانیه افزایش پیدا می‌کند که برای جبران این نقص، از انتخاب و ترکیب هسته‌ها به‌صورت تصادفی استفاده می‌شود.        

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Classification of Sonar Targets Using OMKC

نویسندگان [English]

  • S.M Mousavi 1
  • M Khisheh 2
  • H Hardani 2
چکیده [English]

As for the complex physical properties of sonar targets, classification and distinguish of real targets from the false one is one of the difficult and complex issues for researchers and industrialists of the area. Considering the characteristics of sonar targets, intelligent methods have unique capabilities in categorization of that database. Hence, in recent years the use of neural networks and support vector machine has many applications in this field. Sonar database cannot be separated linearly, as the database has high dimensions in input area. Therefore, this paper aims to classify sonar targets by method called Online Multi-Kernel Classification (OMKC). This method consists of a pool of predetermined kernels that by an algorithm, the selected kernels with predetermined weights will be combined and the weights among them will be updated by another algorithm simultaneously. The results show that this method provides classification accuracy equal to 98.763% which is better than the classical methods of maximum accuracy of 97.05%. However, the algorithm execution time increases 0.1014 second, though for compensating this shortcoming, we use random kernels selection and combination.      

کلیدواژه‌ها [English]

  • sonar
  • Classification
  • OMKC
  • Reverberation
  • Clutter

منابع

[1]     Williams, D. P.; Fakiris E.; “Exploiting Environmental Information for Improved Underwater Target Classification in Sonar Imagery.”; IEEE Transactions on Geosciences and Remote Sensing; 2014; 52, 10, 6284-6297.

[2]     Colin, M. E. G. D.; Beerens, S. P.; “False-Alarm Reduction for Low-Frequency Active Sonar with BPSK Pulses: Experimental Results.”; IEEE Journal of Oceanic Engineering; 2011; 36, 1, 53-60.

[3]     Fandos, R.; Zoubir, A. M.;  Siantidis, K.;  “Unified Design of a Feature-based ADAC System for Mine Hunting using Synthetic Aperture Sonar.”; IEEE Transactions on Geosciences and Remote Sensing; 2014; 52, 5, 2413-2426.

[4]     Shuang, W.; Leung, H.; “A Markov Random Field Approach for Sidescan Sonar Change Detection.”; IEEE Journal

[5]     of Oceanic Engineering; 2012; 37, 4, 659-669.

[6]     de Theije, P. A. M.; Sindt, J. C.; “Single-Ping Target Speed and Course Estimation using a Bistatic Sonar.”; IEEE Journal of Oceanic Engineering; 2006; 31, 1, 236-243.

[7]     Gorman, R. P.; Sejnowski, T. J.; “Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets.”;http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks).

[8]     Gorman, R. P.; Sejnowski, T. J.; “Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets.”; Neural Networks; 1988;  1, 75-89.

[9]     Hoi, S. C.; Jin, R.; Zhao, P.; Yang, T.; “Online Multiple Kernel Classification.”; Machine Learning; 2013; 90, 2, 289-316.

[10] Jade, R. K.; Verma, L. K.; Verma, K.; “Classification using Neural Network and Support Vector Machine for Sonar Data Set.”; International Journal of Computer Trends and Technology; 2013; 4, 2, 116-119.

[11] Jin, R.; Hoi, S. C.; Yang, T.; “Online Multiple Kernel Learning: Algorithms and Mistake Bounds.”; 21st International Conference on Algorithmic Learning
Theory 2010, 390-404.

[12] Barak, O.; Rigotti, M.; “A Simple Derivation of a Bound on the Perceptron Margin using Singular Value Decomposition.”; Neural Computation; 2011; 23, 8, 1935-1943.

[13] Freund, Y.; Schapire, R. E.; “Large Margin Classification using the Perceptron Algorithm.”; Machine Learning; 1999;  37, 3, 277-296.

[14] Chaudhuri, K.; Freund, Y.; Hsu, D.; “A Parameter-Free Hedging Algorithm.”; Advances in Neural Information Processing Systems; 2009; 22, 297-305.

[15] Wang, J.; Zhao, P.; Hoi, S. C. H.; “Exact Soft Confidence-Weighted Learning.”; Proceedings of the International Conference on Machine Learning; 2012; 1-8.

 

[16] Jiejun, X.; Jagadeesh, V.; Manjunath, B. S.; “Multi-Label Learning with Fused Multimodal Bi-Relational Graph.”; IEEE Transactions on Multimedia; 2014; 16 , 2, 403-412.

[17] Gentile, C.; “A New Approximate Maximal Margin Classification Algorithm.”; Journal of Machine Learning Research; 2001; 2, 213-242.

[18] Wang, L.; “Feature Selection with Kernel Class Separability,”; IEEE Transactions on Pattern Analysis and Machine Intelligence; 2008; 30, 9, 1534-1546.

[19] Pachauri, D.; Hinrichs, C.; Chung, M. K.; Johnson, S. C.; Singh, V.; “Topology-based Kernels with Application to Inference Problems in Alzheimer's Disease.”; 2011; 30, 10, 1760-1770.

[20] Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; Singer, Y.; “Online Passive-Aggressive Algorithms.”; Journal of Machine Learning Research; 2006; 7, 2, 551-585.

[21] Crammer, K.; Singer, Y.; “Ultraconservative Online Algorithms for Multi-Class Problems.”; Journal of Machine Learning Research; 2003; 3, 1, 951-991.